Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -4,6 +4,9 @@ import torch
|
|
4 |
from PIL import Image
|
5 |
from transformers import AutoProcessor, AutoModelForCausalLM
|
6 |
|
|
|
|
|
|
|
7 |
|
8 |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
9 |
|
@@ -12,6 +15,8 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
12 |
florence_model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to(device).eval()
|
13 |
florence_processor = AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True)
|
14 |
|
|
|
|
|
15 |
def generate_caption(image):
|
16 |
if not isinstance(image, Image.Image):
|
17 |
image = Image.fromarray(image)
|
@@ -31,10 +36,29 @@ def generate_caption(image):
|
|
31 |
task="<MORE_DETAILED_CAPTION>",
|
32 |
image_size=(image.width, image.height)
|
33 |
)
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
io = gr.Interface(generate_caption,
|
37 |
inputs=[gr.Image(label="Input Image")],
|
38 |
-
outputs = [gr.Textbox(label="Output Prompt", lines=2, show_copy_button = True)
|
|
|
39 |
)
|
40 |
io.launch(debug=True)
|
|
|
4 |
from PIL import Image
|
5 |
from transformers import AutoProcessor, AutoModelForCausalLM
|
6 |
|
7 |
+
import os
|
8 |
+
from gradio_client import Client
|
9 |
+
|
10 |
|
11 |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
12 |
|
|
|
15 |
florence_model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to(device).eval()
|
16 |
florence_processor = AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True)
|
17 |
|
18 |
+
api_key = os.getenv("HF_READ_TOKEN")
|
19 |
+
|
20 |
def generate_caption(image):
|
21 |
if not isinstance(image, Image.Image):
|
22 |
image = Image.fromarray(image)
|
|
|
36 |
task="<MORE_DETAILED_CAPTION>",
|
37 |
image_size=(image.width, image.height)
|
38 |
)
|
39 |
+
prompt = parsed_answer["<MORE_DETAILED_CAPTION>"]
|
40 |
+
yield prompt, None
|
41 |
+
image_path = generate_image(prompt,random.randint(0, 4294967296))
|
42 |
+
yield prompt, image_path
|
43 |
+
|
44 |
+
def generate_image(prompt, seed=42, width=1024, height=1024):
|
45 |
+
try:
|
46 |
+
result = Client("KingNish/Realtime-FLUX", hf_token=api_key).predict(
|
47 |
+
prompt=prompt,
|
48 |
+
seed=seed,
|
49 |
+
width=width,
|
50 |
+
height=height,
|
51 |
+
api_name="/generate_image"
|
52 |
+
)
|
53 |
+
# Extract the image path from the result tuple
|
54 |
+
image_path = result[0]
|
55 |
+
return image_path
|
56 |
+
except Exception as e:
|
57 |
+
raise Exception(f"Error generating image: {str(e)}")
|
58 |
|
59 |
io = gr.Interface(generate_caption,
|
60 |
inputs=[gr.Image(label="Input Image")],
|
61 |
+
outputs = [gr.Textbox(label="Output Prompt", lines=2, show_copy_button = True),
|
62 |
+
gr.Image(label="Output Image")]
|
63 |
)
|
64 |
io.launch(debug=True)
|