Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image
|
2 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
3 |
+
|
4 |
+
# Initialize Florence model
|
5 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
6 |
+
florence_model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to(device).eval()
|
7 |
+
florence_processor = AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True)
|
8 |
+
|
9 |
+
def generate_caption():
|
10 |
+
if not isinstance(image, Image.Image):
|
11 |
+
image = Image.fromarray(image)
|
12 |
+
|
13 |
+
inputs = florence_processor(text="<MORE_DETAILED_CAPTION>", images=image, return_tensors="pt").to(device)
|
14 |
+
generated_ids = florence_model.generate(
|
15 |
+
input_ids=inputs["input_ids"],
|
16 |
+
pixel_values=inputs["pixel_values"],
|
17 |
+
max_new_tokens=1024,
|
18 |
+
early_stopping=False,
|
19 |
+
do_sample=False,
|
20 |
+
num_beams=3,
|
21 |
+
)
|
22 |
+
generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
23 |
+
parsed_answer = florence_processor.post_process_generation(
|
24 |
+
generated_text,
|
25 |
+
task="<MORE_DETAILED_CAPTION>",
|
26 |
+
image_size=(image.width, image.height)
|
27 |
+
)
|
28 |
+
return parsed_answer["<MORE_DETAILED_CAPTION>"]
|
29 |
+
|
30 |
+
io = gr.Interface(generate_caption,
|
31 |
+
inputs=[gr.Image()],
|
32 |
+
outputs = [gr.Textbox(label="Input Image", lines=2, show_copy_button = True]
|
33 |
+
)
|
34 |
+
io.launch(debug=True)
|