import gradio as gr import subprocess import torch from PIL import Image from transformers import AutoProcessor, AutoModelForCausalLM # import os # import random # from gradio_client import Client subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) # Initialize Florence model device = "cuda" if torch.cuda.is_available() else "cpu" florence_model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to(device).eval() florence_processor = AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True) # api_key = os.getenv("HF_READ_TOKEN") article_text = """

Enjoying the tool? Buy me a coffee and get exclusive prompt guides!

Instantly unlock helpful tips for creating better prompts!

Buy Me a Coffee
""" def generate_caption(image): if not isinstance(image, Image.Image): image = Image.fromarray(image) inputs = florence_processor(text="", images=image, return_tensors="pt").to(device) generated_ids = florence_model.generate( input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, early_stopping=False, do_sample=False, num_beams=3, ) generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0] parsed_answer = florence_processor.post_process_generation( generated_text, task="", image_size=(image.width, image.height) ) prompt = parsed_answer[""] print("\n\nGeneration completed!:"+ prompt) return prompt # yield prompt, None # image_path = generate_image(prompt,random.randint(0, 4294967296)) # yield prompt, image_path # def generate_image(prompt, seed=42, width=1024, height=1024): # try: # result = Client("KingNish/Realtime-FLUX", hf_token=api_key).predict( # prompt=prompt, # seed=seed, # width=width, # height=height, # api_name="/generate_image" # ) # # Extract the image path from the result tuple # image_path = result[0] # return image_path # except Exception as e: # raise Exception(f"Error generating image: {str(e)}") io = gr.Interface(generate_caption, inputs=[gr.Image(label="Input Image")], outputs = [gr.Textbox(label="Output Prompt", lines=2, show_copy_button = True), # gr.Image(label="Output Image") article = article_text ] ) io.launch(debug=True)