Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import gradio as gr
|
4 |
+
import spaces
|
5 |
+
from PIL import Image
|
6 |
+
import numpy as np
|
7 |
+
from omegaconf import OmegaConf
|
8 |
+
import requests
|
9 |
+
from tqdm import tqdm
|
10 |
+
|
11 |
+
def download_file(url, filename):
|
12 |
+
response = requests.get(url, stream=True)
|
13 |
+
total_size = int(response.headers.get('content-length', 0))
|
14 |
+
block_size = 1024
|
15 |
+
with open(filename, 'wb') as file, tqdm(
|
16 |
+
desc=filename,
|
17 |
+
total=total_size,
|
18 |
+
unit='iB',
|
19 |
+
unit_scale=True,
|
20 |
+
unit_divisor=1024,
|
21 |
+
) as progress_bar:
|
22 |
+
for data in response.iter_content(block_size):
|
23 |
+
size = file.write(data)
|
24 |
+
progress_bar.update(size)
|
25 |
+
|
26 |
+
def setup_environment():
|
27 |
+
os.makedirs("weights", exist_ok=True)
|
28 |
+
if not os.path.exists("weights/real-world_ccsr.ckpt"):
|
29 |
+
print("Downloading model checkpoint...")
|
30 |
+
download_file(
|
31 |
+
"https://huggingface.co/camenduru/CCSR/resolve/main/real-world_ccsr.ckpt",
|
32 |
+
"weights/real-world_ccsr.ckpt"
|
33 |
+
)
|
34 |
+
else:
|
35 |
+
print("Model checkpoint already exists. Skipping download.")
|
36 |
+
|
37 |
+
setup_environment()
|
38 |
+
|
39 |
+
from ccsr.models.ccsr import CCSR
|
40 |
+
from ccsr.utils.util import instantiate_from_config
|
41 |
+
|
42 |
+
config = OmegaConf.load("configs/model/ccsr_stage2.yaml")
|
43 |
+
model = instantiate_from_config(config.model)
|
44 |
+
ckpt = torch.load("weights/real-world_ccsr.ckpt", map_location="cpu")
|
45 |
+
model.load_state_dict(ckpt["state_dict"], strict=False)
|
46 |
+
model.cuda().eval()
|
47 |
+
|
48 |
+
@spaces.GPU
|
49 |
+
@torch.inference_mode()
|
50 |
+
def infer(image, sr_scale, t_max, t_min, color_fix_type):
|
51 |
+
image = Image.open(image).convert("RGB").resize((256, 256), Image.LANCZOS)
|
52 |
+
image = torch.from_numpy(np.array(image)).float().cuda() / 127.5 - 1
|
53 |
+
image = image.permute(2, 0, 1).unsqueeze(0)
|
54 |
+
|
55 |
+
output = model.super_resolution(
|
56 |
+
image,
|
57 |
+
sr_scale=sr_scale,
|
58 |
+
t_max=t_max,
|
59 |
+
t_min=t_min,
|
60 |
+
color_fix_type=color_fix_type
|
61 |
+
)
|
62 |
+
|
63 |
+
output = ((output.squeeze().permute(1, 2, 0).cpu().numpy() + 1) * 127.5).clip(0, 255).astype(np.uint8)
|
64 |
+
return Image.fromarray(output)
|
65 |
+
|
66 |
+
interface = gr.Interface(
|
67 |
+
fn=infer,
|
68 |
+
inputs=[
|
69 |
+
gr.Image(type="filepath"),
|
70 |
+
gr.Slider(minimum=1, maximum=8, step=1, value=4),
|
71 |
+
gr.Slider(minimum=0, maximum=1, step=0.0001, value=0.6667),
|
72 |
+
gr.Slider(minimum=0, maximum=1, step=0.0001, value=0.3333),
|
73 |
+
gr.Dropdown(choices=["adain", "wavelet", "none"], value="adain"),
|
74 |
+
],
|
75 |
+
outputs=gr.Image(type="pil"),
|
76 |
+
title="CCSR: Continuous Contrastive Super-Resolution",
|
77 |
+
)
|
78 |
+
|
79 |
+
interface.launch()
|