File size: 3,451 Bytes
eb9a9b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import torch
import torch.nn as nn
from annotator.mmpkg.mmcv.cnn import ConvModule

from annotator.mmpkg.mmseg.ops import resize
from ..builder import HEADS
from .decode_head import BaseDecodeHead


class ASPPModule(nn.ModuleList):
    """Atrous Spatial Pyramid Pooling (ASPP) Module.

    Args:
        dilations (tuple[int]): Dilation rate of each layer.
        in_channels (int): Input channels.
        channels (int): Channels after modules, before conv_seg.
        conv_cfg (dict|None): Config of conv layers.
        norm_cfg (dict|None): Config of norm layers.
        act_cfg (dict): Config of activation layers.
    """

    def __init__(self, dilations, in_channels, channels, conv_cfg, norm_cfg,
                 act_cfg):
        super(ASPPModule, self).__init__()
        self.dilations = dilations
        self.in_channels = in_channels
        self.channels = channels
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg
        self.act_cfg = act_cfg
        for dilation in dilations:
            self.append(
                ConvModule(
                    self.in_channels,
                    self.channels,
                    1 if dilation == 1 else 3,
                    dilation=dilation,
                    padding=0 if dilation == 1 else dilation,
                    conv_cfg=self.conv_cfg,
                    norm_cfg=self.norm_cfg,
                    act_cfg=self.act_cfg))

    def forward(self, x):
        """Forward function."""
        aspp_outs = []
        for aspp_module in self:
            aspp_outs.append(aspp_module(x))

        return aspp_outs


@HEADS.register_module()
class ASPPHead(BaseDecodeHead):
    """Rethinking Atrous Convolution for Semantic Image Segmentation.

    This head is the implementation of `DeepLabV3
    <https://arxiv.org/abs/1706.05587>`_.

    Args:
        dilations (tuple[int]): Dilation rates for ASPP module.
            Default: (1, 6, 12, 18).
    """

    def __init__(self, dilations=(1, 6, 12, 18), **kwargs):
        super(ASPPHead, self).__init__(**kwargs)
        assert isinstance(dilations, (list, tuple))
        self.dilations = dilations
        self.image_pool = nn.Sequential(
            nn.AdaptiveAvgPool2d(1),
            ConvModule(
                self.in_channels,
                self.channels,
                1,
                conv_cfg=self.conv_cfg,
                norm_cfg=self.norm_cfg,
                act_cfg=self.act_cfg))
        self.aspp_modules = ASPPModule(
            dilations,
            self.in_channels,
            self.channels,
            conv_cfg=self.conv_cfg,
            norm_cfg=self.norm_cfg,
            act_cfg=self.act_cfg)
        self.bottleneck = ConvModule(
            (len(dilations) + 1) * self.channels,
            self.channels,
            3,
            padding=1,
            conv_cfg=self.conv_cfg,
            norm_cfg=self.norm_cfg,
            act_cfg=self.act_cfg)

    def forward(self, inputs):
        """Forward function."""
        x = self._transform_inputs(inputs)
        aspp_outs = [
            resize(
                self.image_pool(x),
                size=x.size()[2:],
                mode='bilinear',
                align_corners=self.align_corners)
        ]
        aspp_outs.extend(self.aspp_modules(x))
        aspp_outs = torch.cat(aspp_outs, dim=1)
        output = self.bottleneck(aspp_outs)
        output = self.cls_seg(output)
        return output