File size: 13,847 Bytes
eb9a9b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
# Openpose
# Original from CMU https://github.com/CMU-Perceptual-Computing-Lab/openpose
# 2nd Edited by https://github.com/Hzzone/pytorch-openpose
# 3rd Edited by ControlNet
# 4th Edited by ControlNet (added face and correct hands)
# 5th Edited by ControlNet (Improved JSON serialization/deserialization, and lots of bug fixs)
# This preprocessor is licensed by CMU for non-commercial use only.


import os
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"

import json
import torch
import numpy as np
from . import util
from .body import Body, BodyResult, Keypoint
from .hand import Hand
from .face import Face
from .types import PoseResult, HandResult, FaceResult
from annotator.annotator_path import models_path

from typing import Tuple, List, Callable, Union, Optional

body_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/body_pose_model.pth"
hand_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/hand_pose_model.pth"
face_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/facenet.pth"

remote_onnx_det = "https://huggingface.co/yzd-v/DWPose/resolve/main/yolox_l.onnx"
remote_onnx_pose = "https://huggingface.co/yzd-v/DWPose/resolve/main/dw-ll_ucoco_384.onnx"


def draw_poses(poses: List[PoseResult], H, W, draw_body=True, draw_hand=True, draw_face=True):
    """
    Draw the detected poses on an empty canvas.

    Args:
        poses (List[PoseResult]): A list of PoseResult objects containing the detected poses.
        H (int): The height of the canvas.
        W (int): The width of the canvas.
        draw_body (bool, optional): Whether to draw body keypoints. Defaults to True.
        draw_hand (bool, optional): Whether to draw hand keypoints. Defaults to True.
        draw_face (bool, optional): Whether to draw face keypoints. Defaults to True.

    Returns:
        numpy.ndarray: A 3D numpy array representing the canvas with the drawn poses.
    """
    canvas = np.zeros(shape=(H, W, 3), dtype=np.uint8)

    for pose in poses:
        if draw_body:
            canvas = util.draw_bodypose(canvas, pose.body.keypoints)

        if draw_hand:
            canvas = util.draw_handpose(canvas, pose.left_hand)
            canvas = util.draw_handpose(canvas, pose.right_hand)

        if draw_face:
            canvas = util.draw_facepose(canvas, pose.face)

    return canvas


def decode_json_as_poses(json_string: str, normalize_coords: bool = False) -> Tuple[List[PoseResult], int, int]:
    """ Decode the json_string complying with the openpose JSON output format
    to poses that controlnet recognizes.
    https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/doc/02_output.md

    Args:
        json_string: The json string to decode.
        normalize_coords: Whether to normalize coordinates of each keypoint by canvas height/width.
                          `draw_pose` only accepts normalized keypoints. Set this param to True if
                          the input coords are not normalized.
    
    Returns:
        poses
        canvas_height
        canvas_width                      
    """
    pose_json = json.loads(json_string)
    height = pose_json['canvas_height']
    width = pose_json['canvas_width']

    def chunks(lst, n):
        """Yield successive n-sized chunks from lst."""
        for i in range(0, len(lst), n):
            yield lst[i:i + n]
    
    def decompress_keypoints(numbers: Optional[List[float]]) -> Optional[List[Optional[Keypoint]]]:
        if not numbers:
            return None
        
        assert len(numbers) % 3 == 0

        def create_keypoint(x, y, c):
            if c < 1.0:
                return None
            keypoint = Keypoint(x, y)
            return keypoint

        return [
            create_keypoint(x, y, c)
            for x, y, c in chunks(numbers, n=3)
        ]
    
    return (
        [
            PoseResult(
                body=BodyResult(keypoints=decompress_keypoints(pose.get('pose_keypoints_2d'))),
                left_hand=decompress_keypoints(pose.get('hand_left_keypoints_2d')),
                right_hand=decompress_keypoints(pose.get('hand_right_keypoints_2d')),
                face=decompress_keypoints(pose.get('face_keypoints_2d'))
            )
            for pose in pose_json['people']
        ],
        height,
        width,
    )


def encode_poses_as_json(poses: List[PoseResult], canvas_height: int, canvas_width: int) -> dict:
    """ Encode the pose as a JSON compatible dict following openpose JSON output format:
    https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/doc/02_output.md
    """
    def compress_keypoints(keypoints: Union[List[Keypoint], None]) -> Union[List[float], None]:
        if not keypoints:
            return None
        
        return [
            value
            for keypoint in keypoints
            for value in (
                [float(keypoint.x), float(keypoint.y), 1.0]
                if keypoint is not None
                else [0.0, 0.0, 0.0]
            )
        ]

    return {
        'people': [
            {
                'pose_keypoints_2d': compress_keypoints(pose.body.keypoints),
                "face_keypoints_2d": compress_keypoints(pose.face),
                "hand_left_keypoints_2d": compress_keypoints(pose.left_hand),
                "hand_right_keypoints_2d":compress_keypoints(pose.right_hand),
            }
            for pose in poses
        ],
        'canvas_height': canvas_height,
        'canvas_width': canvas_width,
    }

class OpenposeDetector:
    """
    A class for detecting human poses in images using the Openpose model.

    Attributes:
        model_dir (str): Path to the directory where the pose models are stored.
    """
    model_dir = os.path.join(models_path, "openpose")

    def __init__(self):
        self.device = 'cuda'
        self.body_estimation = None
        self.hand_estimation = None
        self.face_estimation = None

        self.dw_pose_estimation = None

    def load_model(self):
        """
        Load the Openpose body, hand, and face models.
        """
        body_modelpath = os.path.join(self.model_dir, "body_pose_model.pth")
        hand_modelpath = os.path.join(self.model_dir, "hand_pose_model.pth")
        face_modelpath = os.path.join(self.model_dir, "facenet.pth")

        if not os.path.exists(body_modelpath):
            from basicsr.utils.download_util import load_file_from_url
            load_file_from_url(body_model_path, model_dir=self.model_dir)

        if not os.path.exists(hand_modelpath):
            from basicsr.utils.download_util import load_file_from_url
            load_file_from_url(hand_model_path, model_dir=self.model_dir)

        if not os.path.exists(face_modelpath):
            from basicsr.utils.download_util import load_file_from_url
            load_file_from_url(face_model_path, model_dir=self.model_dir)

        self.body_estimation = Body(body_modelpath)
        self.hand_estimation = Hand(hand_modelpath)
        self.face_estimation = Face(face_modelpath)
    
    def load_dw_model(self):
        from .wholebody import Wholebody # DW Pose

        def load_model(filename: str, remote_url: str):
            local_path = os.path.join(self.model_dir, filename)
            if not os.path.exists(local_path):
                from basicsr.utils.download_util import load_file_from_url
                load_file_from_url(remote_url, model_dir=self.model_dir)
            return local_path

        onnx_det = load_model("yolox_l.onnx", remote_onnx_det)
        onnx_pose  = load_model("dw-ll_ucoco_384.onnx", remote_onnx_pose)
        self.dw_pose_estimation = Wholebody(onnx_det, onnx_pose)

    def unload_model(self):
        """
        Unload the Openpose models by moving them to the CPU.
        Note: DW Pose models always run on CPU, so no need to `unload` them.
        """
        if self.body_estimation is not None:
            self.body_estimation.model.to("cpu")
            self.hand_estimation.model.to("cpu")
            self.face_estimation.model.to("cpu")

    def detect_hands(self, body: BodyResult, oriImg) -> Tuple[Union[HandResult, None], Union[HandResult, None]]:
        left_hand = None
        right_hand = None
        H, W, _ = oriImg.shape
        for x, y, w, is_left in util.handDetect(body, oriImg):
            peaks = self.hand_estimation(oriImg[y:y+w, x:x+w, :]).astype(np.float32)
            if peaks.ndim == 2 and peaks.shape[1] == 2:
                peaks[:, 0] = np.where(peaks[:, 0] < 1e-6, -1, peaks[:, 0] + x) / float(W)
                peaks[:, 1] = np.where(peaks[:, 1] < 1e-6, -1, peaks[:, 1] + y) / float(H)
                
                hand_result = [
                    Keypoint(x=peak[0], y=peak[1])
                    for peak in peaks
                ]

                if is_left:
                    left_hand = hand_result
                else:
                    right_hand = hand_result

        return left_hand, right_hand

    def detect_face(self, body: BodyResult, oriImg) -> Union[FaceResult, None]:
        face = util.faceDetect(body, oriImg)
        if face is None:
            return None
        
        x, y, w = face
        H, W, _ = oriImg.shape
        heatmaps = self.face_estimation(oriImg[y:y+w, x:x+w, :])
        peaks = self.face_estimation.compute_peaks_from_heatmaps(heatmaps).astype(np.float32)
        if peaks.ndim == 2 and peaks.shape[1] == 2:
            peaks[:, 0] = np.where(peaks[:, 0] < 1e-6, -1, peaks[:, 0] + x) / float(W)
            peaks[:, 1] = np.where(peaks[:, 1] < 1e-6, -1, peaks[:, 1] + y) / float(H)
            return [
                Keypoint(x=peak[0], y=peak[1])
                for peak in peaks
            ]
        
        return None

    def detect_poses(self, oriImg, include_hand=False, include_face=False) -> List[PoseResult]:
        """
        Detect poses in the given image.
            Args:
                oriImg (numpy.ndarray): The input image for pose detection.
                include_hand (bool, optional): Whether to include hand detection. Defaults to False.
                include_face (bool, optional): Whether to include face detection. Defaults to False.

        Returns:
            List[PoseResult]: A list of PoseResult objects containing the detected poses.
        """
        if self.body_estimation is None:
            self.load_model()
            
        self.body_estimation.model.to(self.device)
        self.hand_estimation.model.to(self.device)
        self.face_estimation.model.to(self.device)

        self.body_estimation.cn_device = self.device
        self.hand_estimation.cn_device = self.device
        self.face_estimation.cn_device = self.device

        oriImg = oriImg[:, :, ::-1].copy()
        H, W, C = oriImg.shape
        with torch.no_grad():
            candidate, subset = self.body_estimation(oriImg)
            bodies = self.body_estimation.format_body_result(candidate, subset)

            results = []
            for body in bodies:
                left_hand, right_hand, face = (None,) * 3
                if include_hand:
                    left_hand, right_hand = self.detect_hands(body, oriImg)
                if include_face:
                    face = self.detect_face(body, oriImg)
                
                results.append(PoseResult(BodyResult(
                    keypoints=[
                        Keypoint(
                            x=keypoint.x / float(W),
                            y=keypoint.y / float(H)
                        ) if keypoint is not None else None
                        for keypoint in body.keypoints
                    ], 
                    total_score=body.total_score,
                    total_parts=body.total_parts
                ), left_hand, right_hand, face))
            
            return results
    
    def detect_poses_dw(self, oriImg) -> List[PoseResult]:
        """
        Detect poses in the given image using DW Pose:
        https://github.com/IDEA-Research/DWPose

        Args:
            oriImg (numpy.ndarray): The input image for pose detection.

        Returns:
            List[PoseResult]: A list of PoseResult objects containing the detected poses.
        """
        from .wholebody import Wholebody # DW Pose

        self.load_dw_model()

        with torch.no_grad():
            keypoints_info = self.dw_pose_estimation(oriImg.copy())
            return Wholebody.format_result(keypoints_info)

    def __call__(
            self, oriImg, include_body=True, include_hand=False, include_face=False, 
            use_dw_pose=False, json_pose_callback: Callable[[str], None] = None,
        ):
        """
        Detect and draw poses in the given image.

        Args:
            oriImg (numpy.ndarray): The input image for pose detection and drawing.
            include_body (bool, optional): Whether to include body keypoints. Defaults to True.
            include_hand (bool, optional): Whether to include hand keypoints. Defaults to False.
            include_face (bool, optional): Whether to include face keypoints. Defaults to False.
            use_dw_pose (bool, optional): Whether to use DW pose detection algorithm. Defaults to False.
            json_pose_callback (Callable, optional): A callback that accepts the pose JSON string.

        Returns:
            numpy.ndarray: The image with detected and drawn poses.
        """
        H, W, _ = oriImg.shape

        if use_dw_pose:
            poses = self.detect_poses_dw(oriImg)
        else:
            poses = self.detect_poses(oriImg, include_hand, include_face)

        if json_pose_callback:
            json_pose_callback(encode_poses_as_json(poses, H, W))
        return draw_poses(poses, H, W, draw_body=include_body, draw_hand=include_hand, draw_face=include_face)