File size: 20,994 Bytes
eb9a9b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
"""
Author: Zhuo Su, Wenzhe Liu
Date: Feb 18, 2021
"""

import math

import cv2
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from basicsr.utils import img2tensor
from annotator.annotator_path import DEVICE

nets = {
    'baseline': {
        'layer0':  'cv',
        'layer1':  'cv',
        'layer2':  'cv',
        'layer3':  'cv',
        'layer4':  'cv',
        'layer5':  'cv',
        'layer6':  'cv',
        'layer7':  'cv',
        'layer8':  'cv',
        'layer9':  'cv',
        'layer10': 'cv',
        'layer11': 'cv',
        'layer12': 'cv',
        'layer13': 'cv',
        'layer14': 'cv',
        'layer15': 'cv',
        },
    'c-v15': {
        'layer0':  'cd',
        'layer1':  'cv',
        'layer2':  'cv',
        'layer3':  'cv',
        'layer4':  'cv',
        'layer5':  'cv',
        'layer6':  'cv',
        'layer7':  'cv',
        'layer8':  'cv',
        'layer9':  'cv',
        'layer10': 'cv',
        'layer11': 'cv',
        'layer12': 'cv',
        'layer13': 'cv',
        'layer14': 'cv',
        'layer15': 'cv',
        },
    'a-v15': {
        'layer0':  'ad',
        'layer1':  'cv',
        'layer2':  'cv',
        'layer3':  'cv',
        'layer4':  'cv',
        'layer5':  'cv',
        'layer6':  'cv',
        'layer7':  'cv',
        'layer8':  'cv',
        'layer9':  'cv',
        'layer10': 'cv',
        'layer11': 'cv',
        'layer12': 'cv',
        'layer13': 'cv',
        'layer14': 'cv',
        'layer15': 'cv',
        },
    'r-v15': {
        'layer0':  'rd',
        'layer1':  'cv',
        'layer2':  'cv',
        'layer3':  'cv',
        'layer4':  'cv',
        'layer5':  'cv',
        'layer6':  'cv',
        'layer7':  'cv',
        'layer8':  'cv',
        'layer9':  'cv',
        'layer10': 'cv',
        'layer11': 'cv',
        'layer12': 'cv',
        'layer13': 'cv',
        'layer14': 'cv',
        'layer15': 'cv',
        },
    'cvvv4': {
        'layer0':  'cd',
        'layer1':  'cv',
        'layer2':  'cv',
        'layer3':  'cv',
        'layer4':  'cd',
        'layer5':  'cv',
        'layer6':  'cv',
        'layer7':  'cv',
        'layer8':  'cd',
        'layer9':  'cv',
        'layer10': 'cv',
        'layer11': 'cv',
        'layer12': 'cd',
        'layer13': 'cv',
        'layer14': 'cv',
        'layer15': 'cv',
        },
    'avvv4': {
        'layer0':  'ad',
        'layer1':  'cv',
        'layer2':  'cv',
        'layer3':  'cv',
        'layer4':  'ad',
        'layer5':  'cv',
        'layer6':  'cv',
        'layer7':  'cv',
        'layer8':  'ad',
        'layer9':  'cv',
        'layer10': 'cv',
        'layer11': 'cv',
        'layer12': 'ad',
        'layer13': 'cv',
        'layer14': 'cv',
        'layer15': 'cv',
        },
    'rvvv4': {
        'layer0':  'rd',
        'layer1':  'cv',
        'layer2':  'cv',
        'layer3':  'cv',
        'layer4':  'rd',
        'layer5':  'cv',
        'layer6':  'cv',
        'layer7':  'cv',
        'layer8':  'rd',
        'layer9':  'cv',
        'layer10': 'cv',
        'layer11': 'cv',
        'layer12': 'rd',
        'layer13': 'cv',
        'layer14': 'cv',
        'layer15': 'cv',
        },
    'cccv4': {
        'layer0':  'cd',
        'layer1':  'cd',
        'layer2':  'cd',
        'layer3':  'cv',
        'layer4':  'cd',
        'layer5':  'cd',
        'layer6':  'cd',
        'layer7':  'cv',
        'layer8':  'cd',
        'layer9':  'cd',
        'layer10': 'cd',
        'layer11': 'cv',
        'layer12': 'cd',
        'layer13': 'cd',
        'layer14': 'cd',
        'layer15': 'cv',
        },
    'aaav4': {
        'layer0':  'ad',
        'layer1':  'ad',
        'layer2':  'ad',
        'layer3':  'cv',
        'layer4':  'ad',
        'layer5':  'ad',
        'layer6':  'ad',
        'layer7':  'cv',
        'layer8':  'ad',
        'layer9':  'ad',
        'layer10': 'ad',
        'layer11': 'cv',
        'layer12': 'ad',
        'layer13': 'ad',
        'layer14': 'ad',
        'layer15': 'cv',
        },
    'rrrv4': {
        'layer0':  'rd',
        'layer1':  'rd',
        'layer2':  'rd',
        'layer3':  'cv',
        'layer4':  'rd',
        'layer5':  'rd',
        'layer6':  'rd',
        'layer7':  'cv',
        'layer8':  'rd',
        'layer9':  'rd',
        'layer10': 'rd',
        'layer11': 'cv',
        'layer12': 'rd',
        'layer13': 'rd',
        'layer14': 'rd',
        'layer15': 'cv',
        },
    'c16': {
        'layer0':  'cd',
        'layer1':  'cd',
        'layer2':  'cd',
        'layer3':  'cd',
        'layer4':  'cd',
        'layer5':  'cd',
        'layer6':  'cd',
        'layer7':  'cd',
        'layer8':  'cd',
        'layer9':  'cd',
        'layer10': 'cd',
        'layer11': 'cd',
        'layer12': 'cd',
        'layer13': 'cd',
        'layer14': 'cd',
        'layer15': 'cd',
        },
    'a16': {
        'layer0':  'ad',
        'layer1':  'ad',
        'layer2':  'ad',
        'layer3':  'ad',
        'layer4':  'ad',
        'layer5':  'ad',
        'layer6':  'ad',
        'layer7':  'ad',
        'layer8':  'ad',
        'layer9':  'ad',
        'layer10': 'ad',
        'layer11': 'ad',
        'layer12': 'ad',
        'layer13': 'ad',
        'layer14': 'ad',
        'layer15': 'ad',
        },
    'r16': {
        'layer0':  'rd',
        'layer1':  'rd',
        'layer2':  'rd',
        'layer3':  'rd',
        'layer4':  'rd',
        'layer5':  'rd',
        'layer6':  'rd',
        'layer7':  'rd',
        'layer8':  'rd',
        'layer9':  'rd',
        'layer10': 'rd',
        'layer11': 'rd',
        'layer12': 'rd',
        'layer13': 'rd',
        'layer14': 'rd',
        'layer15': 'rd',
        },
    'carv4': {
        'layer0':  'cd',
        'layer1':  'ad',
        'layer2':  'rd',
        'layer3':  'cv',
        'layer4':  'cd',
        'layer5':  'ad',
        'layer6':  'rd',
        'layer7':  'cv',
        'layer8':  'cd',
        'layer9':  'ad',
        'layer10': 'rd',
        'layer11': 'cv',
        'layer12': 'cd',
        'layer13': 'ad',
        'layer14': 'rd',
        'layer15': 'cv',
        },
    }

def createConvFunc(op_type):
    assert op_type in ['cv', 'cd', 'ad', 'rd'], 'unknown op type: %s' % str(op_type)
    if op_type == 'cv':
        return F.conv2d

    if op_type == 'cd':
        def func(x, weights, bias=None, stride=1, padding=0, dilation=1, groups=1):
            assert dilation in [1, 2], 'dilation for cd_conv should be in 1 or 2'
            assert weights.size(2) == 3 and weights.size(3) == 3, 'kernel size for cd_conv should be 3x3'
            assert padding == dilation, 'padding for cd_conv set wrong'

            weights_c = weights.sum(dim=[2, 3], keepdim=True)
            yc = F.conv2d(x, weights_c, stride=stride, padding=0, groups=groups)
            y = F.conv2d(x, weights, bias, stride=stride, padding=padding, dilation=dilation, groups=groups)
            return y - yc
        return func
    elif op_type == 'ad':
        def func(x, weights, bias=None, stride=1, padding=0, dilation=1, groups=1):
            assert dilation in [1, 2], 'dilation for ad_conv should be in 1 or 2'
            assert weights.size(2) == 3 and weights.size(3) == 3, 'kernel size for ad_conv should be 3x3'
            assert padding == dilation, 'padding for ad_conv set wrong'

            shape = weights.shape
            weights = weights.view(shape[0], shape[1], -1)
            weights_conv = (weights - weights[:, :, [3, 0, 1, 6, 4, 2, 7, 8, 5]]).view(shape) # clock-wise
            y = F.conv2d(x, weights_conv, bias, stride=stride, padding=padding, dilation=dilation, groups=groups)
            return y
        return func
    elif op_type == 'rd':
        def func(x, weights, bias=None, stride=1, padding=0, dilation=1, groups=1):
            assert dilation in [1, 2], 'dilation for rd_conv should be in 1 or 2'
            assert weights.size(2) == 3 and weights.size(3) == 3, 'kernel size for rd_conv should be 3x3'
            padding = 2 * dilation

            shape = weights.shape
            if weights.is_cuda:
                buffer = torch.cuda.FloatTensor(shape[0], shape[1], 5 * 5).fill_(0).to(DEVICE)
            else:
                buffer = torch.zeros(shape[0], shape[1], 5 * 5).to(DEVICE)
            weights = weights.view(shape[0], shape[1], -1)
            buffer[:, :, [0, 2, 4, 10, 14, 20, 22, 24]] = weights[:, :, 1:]
            buffer[:, :, [6, 7, 8, 11, 13, 16, 17, 18]] = -weights[:, :, 1:]
            buffer[:, :, 12] = 0
            buffer = buffer.view(shape[0], shape[1], 5, 5)
            y = F.conv2d(x, buffer, bias, stride=stride, padding=padding, dilation=dilation, groups=groups)
            return y
        return func
    else:
        print('impossible to be here unless you force that')
        return None

class Conv2d(nn.Module):
    def __init__(self, pdc, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=False):
        super(Conv2d, self).__init__()
        if in_channels % groups != 0:
            raise ValueError('in_channels must be divisible by groups')
        if out_channels % groups != 0:
            raise ValueError('out_channels must be divisible by groups')
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.kernel_size = kernel_size
        self.stride = stride
        self.padding = padding
        self.dilation = dilation
        self.groups = groups
        self.weight = nn.Parameter(torch.Tensor(out_channels, in_channels // groups, kernel_size, kernel_size))
        if bias:
            self.bias = nn.Parameter(torch.Tensor(out_channels))
        else:
            self.register_parameter('bias', None)
        self.reset_parameters()
        self.pdc = pdc

    def reset_parameters(self):
        nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
        if self.bias is not None:
            fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight)
            bound = 1 / math.sqrt(fan_in)
            nn.init.uniform_(self.bias, -bound, bound)

    def forward(self, input):

        return self.pdc(input, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups)

class CSAM(nn.Module):
    """
    Compact Spatial Attention Module
    """
    def __init__(self, channels):
        super(CSAM, self).__init__()

        mid_channels = 4
        self.relu1 = nn.ReLU()
        self.conv1 = nn.Conv2d(channels, mid_channels, kernel_size=1, padding=0)
        self.conv2 = nn.Conv2d(mid_channels, 1, kernel_size=3, padding=1, bias=False)
        self.sigmoid = nn.Sigmoid()
        nn.init.constant_(self.conv1.bias, 0)

    def forward(self, x):
        y = self.relu1(x)
        y = self.conv1(y)
        y = self.conv2(y)
        y = self.sigmoid(y)

        return x * y

class CDCM(nn.Module):
    """
    Compact Dilation Convolution based Module
    """
    def __init__(self, in_channels, out_channels):
        super(CDCM, self).__init__()

        self.relu1 = nn.ReLU()
        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, padding=0)
        self.conv2_1 = nn.Conv2d(out_channels, out_channels, kernel_size=3, dilation=5, padding=5, bias=False)
        self.conv2_2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, dilation=7, padding=7, bias=False)
        self.conv2_3 = nn.Conv2d(out_channels, out_channels, kernel_size=3, dilation=9, padding=9, bias=False)
        self.conv2_4 = nn.Conv2d(out_channels, out_channels, kernel_size=3, dilation=11, padding=11, bias=False)
        nn.init.constant_(self.conv1.bias, 0)

    def forward(self, x):
        x = self.relu1(x)
        x = self.conv1(x)
        x1 = self.conv2_1(x)
        x2 = self.conv2_2(x)
        x3 = self.conv2_3(x)
        x4 = self.conv2_4(x)
        return x1 + x2 + x3 + x4


class MapReduce(nn.Module):
    """
    Reduce feature maps into a single edge map
    """
    def __init__(self, channels):
        super(MapReduce, self).__init__()
        self.conv = nn.Conv2d(channels, 1, kernel_size=1, padding=0)
        nn.init.constant_(self.conv.bias, 0)

    def forward(self, x):
        return self.conv(x)


class PDCBlock(nn.Module):
    def __init__(self, pdc, inplane, ouplane, stride=1):
        super(PDCBlock, self).__init__()
        self.stride=stride

        self.stride=stride
        if self.stride > 1:
            self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
            self.shortcut = nn.Conv2d(inplane, ouplane, kernel_size=1, padding=0)
        self.conv1 = Conv2d(pdc, inplane, inplane, kernel_size=3, padding=1, groups=inplane, bias=False)
        self.relu2 = nn.ReLU()
        self.conv2 = nn.Conv2d(inplane, ouplane, kernel_size=1, padding=0, bias=False)

    def forward(self, x):
        if self.stride > 1:
            x = self.pool(x)
        y = self.conv1(x)
        y = self.relu2(y)
        y = self.conv2(y)
        if self.stride > 1:
            x = self.shortcut(x)
        y = y + x
        return y

class PDCBlock_converted(nn.Module):
    """
    CPDC, APDC can be converted to vanilla 3x3 convolution
    RPDC can be converted to vanilla 5x5 convolution
    """
    def __init__(self, pdc, inplane, ouplane, stride=1):
        super(PDCBlock_converted, self).__init__()
        self.stride=stride

        if self.stride > 1:
            self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
            self.shortcut = nn.Conv2d(inplane, ouplane, kernel_size=1, padding=0)
        if pdc == 'rd':
            self.conv1 = nn.Conv2d(inplane, inplane, kernel_size=5, padding=2, groups=inplane, bias=False)
        else:
            self.conv1 = nn.Conv2d(inplane, inplane, kernel_size=3, padding=1, groups=inplane, bias=False)
        self.relu2 = nn.ReLU()
        self.conv2 = nn.Conv2d(inplane, ouplane, kernel_size=1, padding=0, bias=False)

    def forward(self, x):
        if self.stride > 1:
            x = self.pool(x)
        y = self.conv1(x)
        y = self.relu2(y)
        y = self.conv2(y)
        if self.stride > 1:
            x = self.shortcut(x)
        y = y + x
        return y

class PiDiNet(nn.Module):
    def __init__(self, inplane, pdcs, dil=None, sa=False, convert=False):
        super(PiDiNet, self).__init__()
        self.sa = sa
        if dil is not None:
            assert isinstance(dil, int), 'dil should be an int'
        self.dil = dil

        self.fuseplanes = []

        self.inplane = inplane
        if convert:
            if pdcs[0] == 'rd':
                init_kernel_size = 5
                init_padding = 2
            else:
                init_kernel_size = 3
                init_padding = 1
            self.init_block = nn.Conv2d(3, self.inplane,
                    kernel_size=init_kernel_size, padding=init_padding, bias=False)
            block_class = PDCBlock_converted
        else:
            self.init_block = Conv2d(pdcs[0], 3, self.inplane, kernel_size=3, padding=1)
            block_class = PDCBlock

        self.block1_1 = block_class(pdcs[1], self.inplane, self.inplane)
        self.block1_2 = block_class(pdcs[2], self.inplane, self.inplane)
        self.block1_3 = block_class(pdcs[3], self.inplane, self.inplane)
        self.fuseplanes.append(self.inplane) # C

        inplane = self.inplane
        self.inplane = self.inplane * 2
        self.block2_1 = block_class(pdcs[4], inplane, self.inplane, stride=2)
        self.block2_2 = block_class(pdcs[5], self.inplane, self.inplane)
        self.block2_3 = block_class(pdcs[6], self.inplane, self.inplane)
        self.block2_4 = block_class(pdcs[7], self.inplane, self.inplane)
        self.fuseplanes.append(self.inplane) # 2C

        inplane = self.inplane
        self.inplane = self.inplane * 2
        self.block3_1 = block_class(pdcs[8], inplane, self.inplane, stride=2)
        self.block3_2 = block_class(pdcs[9], self.inplane, self.inplane)
        self.block3_3 = block_class(pdcs[10], self.inplane, self.inplane)
        self.block3_4 = block_class(pdcs[11], self.inplane, self.inplane)
        self.fuseplanes.append(self.inplane) # 4C

        self.block4_1 = block_class(pdcs[12], self.inplane, self.inplane, stride=2)
        self.block4_2 = block_class(pdcs[13], self.inplane, self.inplane)
        self.block4_3 = block_class(pdcs[14], self.inplane, self.inplane)
        self.block4_4 = block_class(pdcs[15], self.inplane, self.inplane)
        self.fuseplanes.append(self.inplane) # 4C

        self.conv_reduces = nn.ModuleList()
        if self.sa and self.dil is not None:
            self.attentions = nn.ModuleList()
            self.dilations = nn.ModuleList()
            for i in range(4):
                self.dilations.append(CDCM(self.fuseplanes[i], self.dil))
                self.attentions.append(CSAM(self.dil))
                self.conv_reduces.append(MapReduce(self.dil))
        elif self.sa:
            self.attentions = nn.ModuleList()
            for i in range(4):
                self.attentions.append(CSAM(self.fuseplanes[i]))
                self.conv_reduces.append(MapReduce(self.fuseplanes[i]))
        elif self.dil is not None:
            self.dilations = nn.ModuleList()
            for i in range(4):
                self.dilations.append(CDCM(self.fuseplanes[i], self.dil))
                self.conv_reduces.append(MapReduce(self.dil))
        else:
            for i in range(4):
                self.conv_reduces.append(MapReduce(self.fuseplanes[i]))

        self.classifier = nn.Conv2d(4, 1, kernel_size=1) # has bias
        nn.init.constant_(self.classifier.weight, 0.25)
        nn.init.constant_(self.classifier.bias, 0)

        # print('initialization done')

    def get_weights(self):
        conv_weights = []
        bn_weights = []
        relu_weights = []
        for pname, p in self.named_parameters():
            if 'bn' in pname:
                bn_weights.append(p)
            elif 'relu' in pname:
                relu_weights.append(p)
            else:
                conv_weights.append(p)

        return conv_weights, bn_weights, relu_weights

    def forward(self, x):
        H, W = x.size()[2:]

        x = self.init_block(x)

        x1 = self.block1_1(x)
        x1 = self.block1_2(x1)
        x1 = self.block1_3(x1)

        x2 = self.block2_1(x1)
        x2 = self.block2_2(x2)
        x2 = self.block2_3(x2)
        x2 = self.block2_4(x2)

        x3 = self.block3_1(x2)
        x3 = self.block3_2(x3)
        x3 = self.block3_3(x3)
        x3 = self.block3_4(x3)

        x4 = self.block4_1(x3)
        x4 = self.block4_2(x4)
        x4 = self.block4_3(x4)
        x4 = self.block4_4(x4)

        x_fuses = []
        if self.sa and self.dil is not None:
            for i, xi in enumerate([x1, x2, x3, x4]):
                x_fuses.append(self.attentions[i](self.dilations[i](xi)))
        elif self.sa:
            for i, xi in enumerate([x1, x2, x3, x4]):
                x_fuses.append(self.attentions[i](xi))
        elif self.dil is not None:
            for i, xi in enumerate([x1, x2, x3, x4]):
                x_fuses.append(self.dilations[i](xi))
        else:
            x_fuses = [x1, x2, x3, x4]

        e1 = self.conv_reduces[0](x_fuses[0])
        e1 = F.interpolate(e1, (H, W), mode="bilinear", align_corners=False)

        e2 = self.conv_reduces[1](x_fuses[1])
        e2 = F.interpolate(e2, (H, W), mode="bilinear", align_corners=False)

        e3 = self.conv_reduces[2](x_fuses[2])
        e3 = F.interpolate(e3, (H, W), mode="bilinear", align_corners=False)

        e4 = self.conv_reduces[3](x_fuses[3])
        e4 = F.interpolate(e4, (H, W), mode="bilinear", align_corners=False)

        outputs = [e1, e2, e3, e4]

        output = self.classifier(torch.cat(outputs, dim=1))
        #if not self.training:
        #    return torch.sigmoid(output)

        outputs.append(output)
        outputs = [torch.sigmoid(r) for r in outputs]
        return outputs

def config_model(model):
    model_options = list(nets.keys())
    assert model in model_options, \
        'unrecognized model, please choose from %s' % str(model_options)

    # print(str(nets[model]))

    pdcs = []
    for i in range(16):
        layer_name = 'layer%d' % i
        op = nets[model][layer_name]
        pdcs.append(createConvFunc(op))

    return pdcs

def pidinet():
    pdcs = config_model('carv4')
    dil = 24 #if args.dil else None
    return PiDiNet(60, pdcs, dil=dil, sa=True)


if __name__ == '__main__':
    model = pidinet()
    ckp = torch.load('table5_pidinet.pth')['state_dict']
    model.load_state_dict({k.replace('module.',''):v for k, v in ckp.items()})
    im = cv2.imread('examples/test_my/cat_v4.png')
    im = img2tensor(im).unsqueeze(0)/255.
    res = model(im)[-1]
    res = res>0.5
    res = res.float()
    res = (res[0,0].cpu().data.numpy()*255.).astype(np.uint8)
    print(res.shape)
    cv2.imwrite('edge.png', res)