Spaces:
Running
on
A10G
Running
on
A10G
import os | |
import torch | |
import numpy as np | |
from basicsr.utils.download_util import load_file_from_url | |
import torch.nn as nn | |
from einops import rearrange | |
import utils.constants as const | |
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
models_path = f'{const.CWD}/pretrained_models' | |
norm_layer = nn.InstanceNorm2d | |
class ResidualBlock(nn.Module): | |
def __init__(self, in_features): | |
super(ResidualBlock, self).__init__() | |
conv_block = [ nn.ReflectionPad2d(1), | |
nn.Conv2d(in_features, in_features, 3), | |
norm_layer(in_features), | |
nn.ReLU(inplace=True), | |
nn.ReflectionPad2d(1), | |
nn.Conv2d(in_features, in_features, 3), | |
norm_layer(in_features) | |
] | |
self.conv_block = nn.Sequential(*conv_block) | |
def forward(self, x): | |
return x + self.conv_block(x) | |
class Generator(nn.Module): | |
def __init__(self, input_nc, output_nc, n_residual_blocks=9, sigmoid=True): | |
super(Generator, self).__init__() | |
# Initial convolution block | |
model0 = [ nn.ReflectionPad2d(3), | |
nn.Conv2d(input_nc, 64, 7), | |
norm_layer(64), | |
nn.ReLU(inplace=True) ] | |
self.model0 = nn.Sequential(*model0) | |
# Downsampling | |
model1 = [] | |
in_features = 64 | |
out_features = in_features*2 | |
for _ in range(2): | |
model1 += [ nn.Conv2d(in_features, out_features, 3, stride=2, padding=1), | |
norm_layer(out_features), | |
nn.ReLU(inplace=True) ] | |
in_features = out_features | |
out_features = in_features*2 | |
self.model1 = nn.Sequential(*model1) | |
model2 = [] | |
# Residual blocks | |
for _ in range(n_residual_blocks): | |
model2 += [ResidualBlock(in_features)] | |
self.model2 = nn.Sequential(*model2) | |
# Upsampling | |
model3 = [] | |
out_features = in_features//2 | |
for _ in range(2): | |
model3 += [ nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1), | |
norm_layer(out_features), | |
nn.ReLU(inplace=True) ] | |
in_features = out_features | |
out_features = in_features//2 | |
self.model3 = nn.Sequential(*model3) | |
# Output layer | |
model4 = [ nn.ReflectionPad2d(3), | |
nn.Conv2d(64, output_nc, 7)] | |
if sigmoid: | |
model4 += [nn.Sigmoid()] | |
self.model4 = nn.Sequential(*model4) | |
def forward(self, x, cond=None): | |
out = self.model0(x) | |
out = self.model1(out) | |
out = self.model2(out) | |
out = self.model3(out) | |
out = self.model4(out) | |
return out | |
class LineartDetector: | |
model_dir = os.path.join(models_path, "lineart") | |
model_default = 'sk_model.pth' | |
model_coarse = 'sk_model2.pth' | |
def __init__(self, model_name): | |
self.model = None | |
self.model_name = model_name | |
self.device = DEVICE | |
def load_model(self, name): | |
remote_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/" + name | |
model_path = os.path.join(self.model_dir, name) | |
if not os.path.exists(model_path): | |
load_file_from_url(remote_model_path, model_dir=self.model_dir) | |
model = Generator(3, 1, 3) | |
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu'))) | |
model.eval() | |
self.model = model.to(self.device) | |
def unload_model(self): | |
if self.model is not None: | |
self.model.cpu() | |
def __call__(self, input_image): | |
if self.model is None: | |
self.load_model(self.model_name) | |
self.model.to(self.device) | |
assert input_image.ndim == 3 | |
image = input_image | |
with torch.no_grad(): | |
image = torch.from_numpy(image).float().to(self.device) | |
image = image / 255.0 | |
image = rearrange(image, 'h w c -> 1 c h w') | |
line = self.model(image)[0][0] | |
line = line.cpu().numpy() | |
line = (line * 255.0).clip(0, 255).astype(np.uint8) | |
return line |