RAVE / annotator /lineart /__init__.py
ozgurkara's picture
first commit
eb9a9b4
raw
history blame
4.32 kB
import os
import torch
import numpy as np
from basicsr.utils.download_util import load_file_from_url
import torch.nn as nn
from einops import rearrange
import utils.constants as const
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
models_path = f'{const.CWD}/pretrained_models'
norm_layer = nn.InstanceNorm2d
class ResidualBlock(nn.Module):
def __init__(self, in_features):
super(ResidualBlock, self).__init__()
conv_block = [ nn.ReflectionPad2d(1),
nn.Conv2d(in_features, in_features, 3),
norm_layer(in_features),
nn.ReLU(inplace=True),
nn.ReflectionPad2d(1),
nn.Conv2d(in_features, in_features, 3),
norm_layer(in_features)
]
self.conv_block = nn.Sequential(*conv_block)
def forward(self, x):
return x + self.conv_block(x)
class Generator(nn.Module):
def __init__(self, input_nc, output_nc, n_residual_blocks=9, sigmoid=True):
super(Generator, self).__init__()
# Initial convolution block
model0 = [ nn.ReflectionPad2d(3),
nn.Conv2d(input_nc, 64, 7),
norm_layer(64),
nn.ReLU(inplace=True) ]
self.model0 = nn.Sequential(*model0)
# Downsampling
model1 = []
in_features = 64
out_features = in_features*2
for _ in range(2):
model1 += [ nn.Conv2d(in_features, out_features, 3, stride=2, padding=1),
norm_layer(out_features),
nn.ReLU(inplace=True) ]
in_features = out_features
out_features = in_features*2
self.model1 = nn.Sequential(*model1)
model2 = []
# Residual blocks
for _ in range(n_residual_blocks):
model2 += [ResidualBlock(in_features)]
self.model2 = nn.Sequential(*model2)
# Upsampling
model3 = []
out_features = in_features//2
for _ in range(2):
model3 += [ nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1),
norm_layer(out_features),
nn.ReLU(inplace=True) ]
in_features = out_features
out_features = in_features//2
self.model3 = nn.Sequential(*model3)
# Output layer
model4 = [ nn.ReflectionPad2d(3),
nn.Conv2d(64, output_nc, 7)]
if sigmoid:
model4 += [nn.Sigmoid()]
self.model4 = nn.Sequential(*model4)
def forward(self, x, cond=None):
out = self.model0(x)
out = self.model1(out)
out = self.model2(out)
out = self.model3(out)
out = self.model4(out)
return out
class LineartDetector:
model_dir = os.path.join(models_path, "lineart")
model_default = 'sk_model.pth'
model_coarse = 'sk_model2.pth'
def __init__(self, model_name):
self.model = None
self.model_name = model_name
self.device = DEVICE
def load_model(self, name):
remote_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/" + name
model_path = os.path.join(self.model_dir, name)
if not os.path.exists(model_path):
load_file_from_url(remote_model_path, model_dir=self.model_dir)
model = Generator(3, 1, 3)
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
model.eval()
self.model = model.to(self.device)
def unload_model(self):
if self.model is not None:
self.model.cpu()
def __call__(self, input_image):
if self.model is None:
self.load_model(self.model_name)
self.model.to(self.device)
assert input_image.ndim == 3
image = input_image
with torch.no_grad():
image = torch.from_numpy(image).float().to(self.device)
image = image / 255.0
image = rearrange(image, 'h w c -> 1 c h w')
line = self.model(image)[0][0]
line = line.cpu().numpy()
line = (line * 255.0).clip(0, 255).astype(np.uint8)
return line