Spaces:
Running
on
A10G
Running
on
A10G
import torch | |
import torch.nn as nn | |
from annotator.mmpkg.mmcv.cnn import ConvModule | |
from annotator.mmpkg.mmseg.ops import resize | |
from ..builder import HEADS | |
from .decode_head import BaseDecodeHead | |
class PPM(nn.ModuleList): | |
"""Pooling Pyramid Module used in PSPNet. | |
Args: | |
pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid | |
Module. | |
in_channels (int): Input channels. | |
channels (int): Channels after modules, before conv_seg. | |
conv_cfg (dict|None): Config of conv layers. | |
norm_cfg (dict|None): Config of norm layers. | |
act_cfg (dict): Config of activation layers. | |
align_corners (bool): align_corners argument of F.interpolate. | |
""" | |
def __init__(self, pool_scales, in_channels, channels, conv_cfg, norm_cfg, | |
act_cfg, align_corners): | |
super(PPM, self).__init__() | |
self.pool_scales = pool_scales | |
self.align_corners = align_corners | |
self.in_channels = in_channels | |
self.channels = channels | |
self.conv_cfg = conv_cfg | |
self.norm_cfg = norm_cfg | |
self.act_cfg = act_cfg | |
for pool_scale in pool_scales: | |
self.append( | |
nn.Sequential( | |
nn.AdaptiveAvgPool2d(pool_scale), | |
ConvModule( | |
self.in_channels, | |
self.channels, | |
1, | |
conv_cfg=self.conv_cfg, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg))) | |
def forward(self, x): | |
"""Forward function.""" | |
ppm_outs = [] | |
for ppm in self: | |
ppm_out = ppm(x) | |
upsampled_ppm_out = resize( | |
ppm_out, | |
size=x.size()[2:], | |
mode='bilinear', | |
align_corners=self.align_corners) | |
ppm_outs.append(upsampled_ppm_out) | |
return ppm_outs | |
class PSPHead(BaseDecodeHead): | |
"""Pyramid Scene Parsing Network. | |
This head is the implementation of | |
`PSPNet <https://arxiv.org/abs/1612.01105>`_. | |
Args: | |
pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid | |
Module. Default: (1, 2, 3, 6). | |
""" | |
def __init__(self, pool_scales=(1, 2, 3, 6), **kwargs): | |
super(PSPHead, self).__init__(**kwargs) | |
assert isinstance(pool_scales, (list, tuple)) | |
self.pool_scales = pool_scales | |
self.psp_modules = PPM( | |
self.pool_scales, | |
self.in_channels, | |
self.channels, | |
conv_cfg=self.conv_cfg, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg, | |
align_corners=self.align_corners) | |
self.bottleneck = ConvModule( | |
self.in_channels + len(pool_scales) * self.channels, | |
self.channels, | |
3, | |
padding=1, | |
conv_cfg=self.conv_cfg, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg) | |
def forward(self, inputs): | |
"""Forward function.""" | |
x = self._transform_inputs(inputs) | |
psp_outs = [x] | |
psp_outs.extend(self.psp_modules(x)) | |
psp_outs = torch.cat(psp_outs, dim=1) | |
output = self.bottleneck(psp_outs) | |
output = self.cls_seg(output) | |
return output | |