Spaces:
Running
on
A10G
Running
on
A10G
from annotator.mmpkg.mmcv.cnn import build_conv_layer, build_norm_layer | |
from torch import nn as nn | |
class ResLayer(nn.Sequential): | |
"""ResLayer to build ResNet style backbone. | |
Args: | |
block (nn.Module): block used to build ResLayer. | |
inplanes (int): inplanes of block. | |
planes (int): planes of block. | |
num_blocks (int): number of blocks. | |
stride (int): stride of the first block. Default: 1 | |
avg_down (bool): Use AvgPool instead of stride conv when | |
downsampling in the bottleneck. Default: False | |
conv_cfg (dict): dictionary to construct and config conv layer. | |
Default: None | |
norm_cfg (dict): dictionary to construct and config norm layer. | |
Default: dict(type='BN') | |
multi_grid (int | None): Multi grid dilation rates of last | |
stage. Default: None | |
contract_dilation (bool): Whether contract first dilation of each layer | |
Default: False | |
""" | |
def __init__(self, | |
block, | |
inplanes, | |
planes, | |
num_blocks, | |
stride=1, | |
dilation=1, | |
avg_down=False, | |
conv_cfg=None, | |
norm_cfg=dict(type='BN'), | |
multi_grid=None, | |
contract_dilation=False, | |
**kwargs): | |
self.block = block | |
downsample = None | |
if stride != 1 or inplanes != planes * block.expansion: | |
downsample = [] | |
conv_stride = stride | |
if avg_down: | |
conv_stride = 1 | |
downsample.append( | |
nn.AvgPool2d( | |
kernel_size=stride, | |
stride=stride, | |
ceil_mode=True, | |
count_include_pad=False)) | |
downsample.extend([ | |
build_conv_layer( | |
conv_cfg, | |
inplanes, | |
planes * block.expansion, | |
kernel_size=1, | |
stride=conv_stride, | |
bias=False), | |
build_norm_layer(norm_cfg, planes * block.expansion)[1] | |
]) | |
downsample = nn.Sequential(*downsample) | |
layers = [] | |
if multi_grid is None: | |
if dilation > 1 and contract_dilation: | |
first_dilation = dilation // 2 | |
else: | |
first_dilation = dilation | |
else: | |
first_dilation = multi_grid[0] | |
layers.append( | |
block( | |
inplanes=inplanes, | |
planes=planes, | |
stride=stride, | |
dilation=first_dilation, | |
downsample=downsample, | |
conv_cfg=conv_cfg, | |
norm_cfg=norm_cfg, | |
**kwargs)) | |
inplanes = planes * block.expansion | |
for i in range(1, num_blocks): | |
layers.append( | |
block( | |
inplanes=inplanes, | |
planes=planes, | |
stride=1, | |
dilation=dilation if multi_grid is None else multi_grid[i], | |
conv_cfg=conv_cfg, | |
norm_cfg=norm_cfg, | |
**kwargs)) | |
super(ResLayer, self).__init__(*layers) | |