Spaces:
Running
on
A10G
Running
on
A10G
__author__ = 'tylin' | |
__version__ = '2.0' | |
# Interface for accessing the Microsoft COCO dataset. | |
# Microsoft COCO is a large image dataset designed for object detection, | |
# segmentation, and caption generation. annotator.oneformer.pycocotools is a Python API that | |
# assists in loading, parsing and visualizing the annotations in COCO. | |
# Please visit http://mscoco.org/ for more information on COCO, including | |
# for the data, paper, and tutorials. The exact format of the annotations | |
# is also described on the COCO website. For example usage of the annotator.oneformer.pycocotools | |
# please see annotator.oneformer.pycocotools_demo.ipynb. In addition to this API, please download both | |
# the COCO images and annotations in order to run the demo. | |
# An alternative to using the API is to load the annotations directly | |
# into Python dictionary | |
# Using the API provides additional utility functions. Note that this API | |
# supports both *instance* and *caption* annotations. In the case of | |
# captions not all functions are defined (e.g. categories are undefined). | |
# The following API functions are defined: | |
# COCO - COCO api class that loads COCO annotation file and prepare data structures. | |
# decodeMask - Decode binary mask M encoded via run-length encoding. | |
# encodeMask - Encode binary mask M using run-length encoding. | |
# getAnnIds - Get ann ids that satisfy given filter conditions. | |
# getCatIds - Get cat ids that satisfy given filter conditions. | |
# getImgIds - Get img ids that satisfy given filter conditions. | |
# loadAnns - Load anns with the specified ids. | |
# loadCats - Load cats with the specified ids. | |
# loadImgs - Load imgs with the specified ids. | |
# annToMask - Convert segmentation in an annotation to binary mask. | |
# showAnns - Display the specified annotations. | |
# loadRes - Load algorithm results and create API for accessing them. | |
# download - Download COCO images from mscoco.org server. | |
# Throughout the API "ann"=annotation, "cat"=category, and "img"=image. | |
# Help on each functions can be accessed by: "help COCO>function". | |
# See also COCO>decodeMask, | |
# COCO>encodeMask, COCO>getAnnIds, COCO>getCatIds, | |
# COCO>getImgIds, COCO>loadAnns, COCO>loadCats, | |
# COCO>loadImgs, COCO>annToMask, COCO>showAnns | |
# Microsoft COCO Toolbox. version 2.0 | |
# Data, paper, and tutorials available at: http://mscoco.org/ | |
# Code written by Piotr Dollar and Tsung-Yi Lin, 2014. | |
# Licensed under the Simplified BSD License [see bsd.txt] | |
import json | |
import time | |
import numpy as np | |
import copy | |
import itertools | |
from . import mask as maskUtils | |
import os | |
from collections import defaultdict | |
import sys | |
PYTHON_VERSION = sys.version_info[0] | |
if PYTHON_VERSION == 2: | |
from urllib import urlretrieve | |
elif PYTHON_VERSION == 3: | |
from urllib.request import urlretrieve | |
def _isArrayLike(obj): | |
return hasattr(obj, '__iter__') and hasattr(obj, '__len__') | |
class COCO: | |
def __init__(self, annotation_file=None): | |
""" | |
Constructor of Microsoft COCO helper class for reading and visualizing annotations. | |
:param annotation_file (str): location of annotation file | |
:param image_folder (str): location to the folder that hosts images. | |
:return: | |
""" | |
# load dataset | |
self.dataset,self.anns,self.cats,self.imgs = dict(),dict(),dict(),dict() | |
self.imgToAnns, self.catToImgs = defaultdict(list), defaultdict(list) | |
if not annotation_file == None: | |
print('loading annotations into memory...') | |
tic = time.time() | |
with open(annotation_file, 'r') as f: | |
dataset = json.load(f) | |
assert type(dataset)==dict, 'annotation file format {} not supported'.format(type(dataset)) | |
print('Done (t={:0.2f}s)'.format(time.time()- tic)) | |
self.dataset = dataset | |
self.createIndex() | |
def createIndex(self): | |
# create index | |
print('creating index...') | |
anns, cats, imgs = {}, {}, {} | |
imgToAnns,catToImgs = defaultdict(list),defaultdict(list) | |
if 'annotations' in self.dataset: | |
for ann in self.dataset['annotations']: | |
imgToAnns[ann['image_id']].append(ann) | |
anns[ann['id']] = ann | |
if 'images' in self.dataset: | |
for img in self.dataset['images']: | |
imgs[img['id']] = img | |
if 'categories' in self.dataset: | |
for cat in self.dataset['categories']: | |
cats[cat['id']] = cat | |
if 'annotations' in self.dataset and 'categories' in self.dataset: | |
for ann in self.dataset['annotations']: | |
catToImgs[ann['category_id']].append(ann['image_id']) | |
print('index created!') | |
# create class members | |
self.anns = anns | |
self.imgToAnns = imgToAnns | |
self.catToImgs = catToImgs | |
self.imgs = imgs | |
self.cats = cats | |
def info(self): | |
""" | |
Print information about the annotation file. | |
:return: | |
""" | |
for key, value in self.dataset['info'].items(): | |
print('{}: {}'.format(key, value)) | |
def getAnnIds(self, imgIds=[], catIds=[], areaRng=[], iscrowd=None): | |
""" | |
Get ann ids that satisfy given filter conditions. default skips that filter | |
:param imgIds (int array) : get anns for given imgs | |
catIds (int array) : get anns for given cats | |
areaRng (float array) : get anns for given area range (e.g. [0 inf]) | |
iscrowd (boolean) : get anns for given crowd label (False or True) | |
:return: ids (int array) : integer array of ann ids | |
""" | |
imgIds = imgIds if _isArrayLike(imgIds) else [imgIds] | |
catIds = catIds if _isArrayLike(catIds) else [catIds] | |
if len(imgIds) == len(catIds) == len(areaRng) == 0: | |
anns = self.dataset['annotations'] | |
else: | |
if not len(imgIds) == 0: | |
lists = [self.imgToAnns[imgId] for imgId in imgIds if imgId in self.imgToAnns] | |
anns = list(itertools.chain.from_iterable(lists)) | |
else: | |
anns = self.dataset['annotations'] | |
anns = anns if len(catIds) == 0 else [ann for ann in anns if ann['category_id'] in catIds] | |
anns = anns if len(areaRng) == 0 else [ann for ann in anns if ann['area'] > areaRng[0] and ann['area'] < areaRng[1]] | |
if not iscrowd == None: | |
ids = [ann['id'] for ann in anns if ann['iscrowd'] == iscrowd] | |
else: | |
ids = [ann['id'] for ann in anns] | |
return ids | |
def getCatIds(self, catNms=[], supNms=[], catIds=[]): | |
""" | |
filtering parameters. default skips that filter. | |
:param catNms (str array) : get cats for given cat names | |
:param supNms (str array) : get cats for given supercategory names | |
:param catIds (int array) : get cats for given cat ids | |
:return: ids (int array) : integer array of cat ids | |
""" | |
catNms = catNms if _isArrayLike(catNms) else [catNms] | |
supNms = supNms if _isArrayLike(supNms) else [supNms] | |
catIds = catIds if _isArrayLike(catIds) else [catIds] | |
if len(catNms) == len(supNms) == len(catIds) == 0: | |
cats = self.dataset['categories'] | |
else: | |
cats = self.dataset['categories'] | |
cats = cats if len(catNms) == 0 else [cat for cat in cats if cat['name'] in catNms] | |
cats = cats if len(supNms) == 0 else [cat for cat in cats if cat['supercategory'] in supNms] | |
cats = cats if len(catIds) == 0 else [cat for cat in cats if cat['id'] in catIds] | |
ids = [cat['id'] for cat in cats] | |
return ids | |
def getImgIds(self, imgIds=[], catIds=[]): | |
''' | |
Get img ids that satisfy given filter conditions. | |
:param imgIds (int array) : get imgs for given ids | |
:param catIds (int array) : get imgs with all given cats | |
:return: ids (int array) : integer array of img ids | |
''' | |
imgIds = imgIds if _isArrayLike(imgIds) else [imgIds] | |
catIds = catIds if _isArrayLike(catIds) else [catIds] | |
if len(imgIds) == len(catIds) == 0: | |
ids = self.imgs.keys() | |
else: | |
ids = set(imgIds) | |
for i, catId in enumerate(catIds): | |
if i == 0 and len(ids) == 0: | |
ids = set(self.catToImgs[catId]) | |
else: | |
ids &= set(self.catToImgs[catId]) | |
return list(ids) | |
def loadAnns(self, ids=[]): | |
""" | |
Load anns with the specified ids. | |
:param ids (int array) : integer ids specifying anns | |
:return: anns (object array) : loaded ann objects | |
""" | |
if _isArrayLike(ids): | |
return [self.anns[id] for id in ids] | |
elif type(ids) == int: | |
return [self.anns[ids]] | |
def loadCats(self, ids=[]): | |
""" | |
Load cats with the specified ids. | |
:param ids (int array) : integer ids specifying cats | |
:return: cats (object array) : loaded cat objects | |
""" | |
if _isArrayLike(ids): | |
return [self.cats[id] for id in ids] | |
elif type(ids) == int: | |
return [self.cats[ids]] | |
def loadImgs(self, ids=[]): | |
""" | |
Load anns with the specified ids. | |
:param ids (int array) : integer ids specifying img | |
:return: imgs (object array) : loaded img objects | |
""" | |
if _isArrayLike(ids): | |
return [self.imgs[id] for id in ids] | |
elif type(ids) == int: | |
return [self.imgs[ids]] | |
def showAnns(self, anns, draw_bbox=False): | |
""" | |
Display the specified annotations. | |
:param anns (array of object): annotations to display | |
:return: None | |
""" | |
if len(anns) == 0: | |
return 0 | |
if 'segmentation' in anns[0] or 'keypoints' in anns[0]: | |
datasetType = 'instances' | |
elif 'caption' in anns[0]: | |
datasetType = 'captions' | |
else: | |
raise Exception('datasetType not supported') | |
if datasetType == 'instances': | |
import matplotlib.pyplot as plt | |
from matplotlib.collections import PatchCollection | |
from matplotlib.patches import Polygon | |
ax = plt.gca() | |
ax.set_autoscale_on(False) | |
polygons = [] | |
color = [] | |
for ann in anns: | |
c = (np.random.random((1, 3))*0.6+0.4).tolist()[0] | |
if 'segmentation' in ann: | |
if type(ann['segmentation']) == list: | |
# polygon | |
for seg in ann['segmentation']: | |
poly = np.array(seg).reshape((int(len(seg)/2), 2)) | |
polygons.append(Polygon(poly)) | |
color.append(c) | |
else: | |
# mask | |
t = self.imgs[ann['image_id']] | |
if type(ann['segmentation']['counts']) == list: | |
rle = maskUtils.frPyObjects([ann['segmentation']], t['height'], t['width']) | |
else: | |
rle = [ann['segmentation']] | |
m = maskUtils.decode(rle) | |
img = np.ones( (m.shape[0], m.shape[1], 3) ) | |
if ann['iscrowd'] == 1: | |
color_mask = np.array([2.0,166.0,101.0])/255 | |
if ann['iscrowd'] == 0: | |
color_mask = np.random.random((1, 3)).tolist()[0] | |
for i in range(3): | |
img[:,:,i] = color_mask[i] | |
ax.imshow(np.dstack( (img, m*0.5) )) | |
if 'keypoints' in ann and type(ann['keypoints']) == list: | |
# turn skeleton into zero-based index | |
sks = np.array(self.loadCats(ann['category_id'])[0]['skeleton'])-1 | |
kp = np.array(ann['keypoints']) | |
x = kp[0::3] | |
y = kp[1::3] | |
v = kp[2::3] | |
for sk in sks: | |
if np.all(v[sk]>0): | |
plt.plot(x[sk],y[sk], linewidth=3, color=c) | |
plt.plot(x[v>0], y[v>0],'o',markersize=8, markerfacecolor=c, markeredgecolor='k',markeredgewidth=2) | |
plt.plot(x[v>1], y[v>1],'o',markersize=8, markerfacecolor=c, markeredgecolor=c, markeredgewidth=2) | |
if draw_bbox: | |
[bbox_x, bbox_y, bbox_w, bbox_h] = ann['bbox'] | |
poly = [[bbox_x, bbox_y], [bbox_x, bbox_y+bbox_h], [bbox_x+bbox_w, bbox_y+bbox_h], [bbox_x+bbox_w, bbox_y]] | |
np_poly = np.array(poly).reshape((4,2)) | |
polygons.append(Polygon(np_poly)) | |
color.append(c) | |
p = PatchCollection(polygons, facecolor=color, linewidths=0, alpha=0.4) | |
ax.add_collection(p) | |
p = PatchCollection(polygons, facecolor='none', edgecolors=color, linewidths=2) | |
ax.add_collection(p) | |
elif datasetType == 'captions': | |
for ann in anns: | |
print(ann['caption']) | |
def loadRes(self, resFile): | |
""" | |
Load result file and return a result api object. | |
:param resFile (str) : file name of result file | |
:return: res (obj) : result api object | |
""" | |
res = COCO() | |
res.dataset['images'] = [img for img in self.dataset['images']] | |
print('Loading and preparing results...') | |
tic = time.time() | |
if type(resFile) == str or (PYTHON_VERSION == 2 and type(resFile) == unicode): | |
with open(resFile) as f: | |
anns = json.load(f) | |
elif type(resFile) == np.ndarray: | |
anns = self.loadNumpyAnnotations(resFile) | |
else: | |
anns = resFile | |
assert type(anns) == list, 'results in not an array of objects' | |
annsImgIds = [ann['image_id'] for ann in anns] | |
assert set(annsImgIds) == (set(annsImgIds) & set(self.getImgIds())), \ | |
'Results do not correspond to current coco set' | |
if 'caption' in anns[0]: | |
imgIds = set([img['id'] for img in res.dataset['images']]) & set([ann['image_id'] for ann in anns]) | |
res.dataset['images'] = [img for img in res.dataset['images'] if img['id'] in imgIds] | |
for id, ann in enumerate(anns): | |
ann['id'] = id+1 | |
elif 'bbox' in anns[0] and not anns[0]['bbox'] == []: | |
res.dataset['categories'] = copy.deepcopy(self.dataset['categories']) | |
for id, ann in enumerate(anns): | |
bb = ann['bbox'] | |
x1, x2, y1, y2 = [bb[0], bb[0]+bb[2], bb[1], bb[1]+bb[3]] | |
if not 'segmentation' in ann: | |
ann['segmentation'] = [[x1, y1, x1, y2, x2, y2, x2, y1]] | |
ann['area'] = bb[2]*bb[3] | |
ann['id'] = id+1 | |
ann['iscrowd'] = 0 | |
elif 'segmentation' in anns[0]: | |
res.dataset['categories'] = copy.deepcopy(self.dataset['categories']) | |
for id, ann in enumerate(anns): | |
# now only support compressed RLE format as segmentation results | |
ann['area'] = maskUtils.area(ann['segmentation']) | |
if not 'bbox' in ann: | |
ann['bbox'] = maskUtils.toBbox(ann['segmentation']) | |
ann['id'] = id+1 | |
ann['iscrowd'] = 0 | |
elif 'keypoints' in anns[0]: | |
res.dataset['categories'] = copy.deepcopy(self.dataset['categories']) | |
for id, ann in enumerate(anns): | |
s = ann['keypoints'] | |
x = s[0::3] | |
y = s[1::3] | |
x0,x1,y0,y1 = np.min(x), np.max(x), np.min(y), np.max(y) | |
ann['area'] = (x1-x0)*(y1-y0) | |
ann['id'] = id + 1 | |
ann['bbox'] = [x0,y0,x1-x0,y1-y0] | |
print('DONE (t={:0.2f}s)'.format(time.time()- tic)) | |
res.dataset['annotations'] = anns | |
res.createIndex() | |
return res | |
def download(self, tarDir = None, imgIds = [] ): | |
''' | |
Download COCO images from mscoco.org server. | |
:param tarDir (str): COCO results directory name | |
imgIds (list): images to be downloaded | |
:return: | |
''' | |
if tarDir is None: | |
print('Please specify target directory') | |
return -1 | |
if len(imgIds) == 0: | |
imgs = self.imgs.values() | |
else: | |
imgs = self.loadImgs(imgIds) | |
N = len(imgs) | |
if not os.path.exists(tarDir): | |
os.makedirs(tarDir) | |
for i, img in enumerate(imgs): | |
tic = time.time() | |
fname = os.path.join(tarDir, img['file_name']) | |
if not os.path.exists(fname): | |
urlretrieve(img['coco_url'], fname) | |
print('downloaded {}/{} images (t={:0.1f}s)'.format(i, N, time.time()- tic)) | |
def loadNumpyAnnotations(self, data): | |
""" | |
Convert result data from a numpy array [Nx7] where each row contains {imageID,x1,y1,w,h,score,class} | |
:param data (numpy.ndarray) | |
:return: annotations (python nested list) | |
""" | |
print('Converting ndarray to lists...') | |
assert(type(data) == np.ndarray) | |
print(data.shape) | |
assert(data.shape[1] == 7) | |
N = data.shape[0] | |
ann = [] | |
for i in range(N): | |
if i % 1000000 == 0: | |
print('{}/{}'.format(i,N)) | |
ann += [{ | |
'image_id' : int(data[i, 0]), | |
'bbox' : [ data[i, 1], data[i, 2], data[i, 3], data[i, 4] ], | |
'score' : data[i, 5], | |
'category_id': int(data[i, 6]), | |
}] | |
return ann | |
def annToRLE(self, ann): | |
""" | |
Convert annotation which can be polygons, uncompressed RLE to RLE. | |
:return: binary mask (numpy 2D array) | |
""" | |
t = self.imgs[ann['image_id']] | |
h, w = t['height'], t['width'] | |
segm = ann['segmentation'] | |
if type(segm) == list: | |
# polygon -- a single object might consist of multiple parts | |
# we merge all parts into one mask rle code | |
rles = maskUtils.frPyObjects(segm, h, w) | |
rle = maskUtils.merge(rles) | |
elif type(segm['counts']) == list: | |
# uncompressed RLE | |
rle = maskUtils.frPyObjects(segm, h, w) | |
else: | |
# rle | |
rle = ann['segmentation'] | |
return rle | |
def annToMask(self, ann): | |
""" | |
Convert annotation which can be polygons, uncompressed RLE, or RLE to binary mask. | |
:return: binary mask (numpy 2D array) | |
""" | |
rle = self.annToRLE(ann) | |
m = maskUtils.decode(rle) | |
return m | |