Spaces:
Running
on
A10G
Running
on
A10G
import cv2 | |
import numpy as np | |
import torch | |
import os | |
from einops import rearrange | |
from .models.mbv2_mlsd_tiny import MobileV2_MLSD_Tiny | |
from .models.mbv2_mlsd_large import MobileV2_MLSD_Large | |
from .utils import pred_lines | |
from modules import devices | |
from annotator.annotator_path import models_path | |
mlsdmodel = None | |
remote_model_path = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/mlsd_large_512_fp32.pth" | |
old_modeldir = os.path.dirname(os.path.realpath(__file__)) | |
modeldir = os.path.join(models_path, "mlsd") | |
def unload_mlsd_model(): | |
global mlsdmodel | |
if mlsdmodel is not None: | |
mlsdmodel = mlsdmodel.cpu() | |
def apply_mlsd(input_image, thr_v, thr_d): | |
global modelpath, mlsdmodel | |
if mlsdmodel is None: | |
modelpath = os.path.join(modeldir, "mlsd_large_512_fp32.pth") | |
old_modelpath = os.path.join(old_modeldir, "mlsd_large_512_fp32.pth") | |
if os.path.exists(old_modelpath): | |
modelpath = old_modelpath | |
elif not os.path.exists(modelpath): | |
from basicsr.utils.download_util import load_file_from_url | |
load_file_from_url(remote_model_path, model_dir=modeldir) | |
mlsdmodel = MobileV2_MLSD_Large() | |
mlsdmodel.load_state_dict(torch.load(modelpath), strict=True) | |
mlsdmodel = mlsdmodel.to(devices.get_device_for("controlnet")).eval() | |
model = mlsdmodel | |
assert input_image.ndim == 3 | |
img = input_image | |
img_output = np.zeros_like(img) | |
try: | |
with torch.no_grad(): | |
lines = pred_lines(img, model, [img.shape[0], img.shape[1]], thr_v, thr_d) | |
for line in lines: | |
x_start, y_start, x_end, y_end = [int(val) for val in line] | |
cv2.line(img_output, (x_start, y_start), (x_end, y_end), [255, 255, 255], 1) | |
except Exception as e: | |
pass | |
return img_output[:, :, 0] | |