import torch import torch.nn as nn import torch.nn.functional as F import torchvision from annotator.lama.saicinpainting.training.losses.perceptual import IMAGENET_STD, IMAGENET_MEAN def dummy_distance_weighter(real_img, pred_img, mask): return mask def get_gauss_kernel(kernel_size, width_factor=1): coords = torch.stack(torch.meshgrid(torch.arange(kernel_size), torch.arange(kernel_size)), dim=0).float() diff = torch.exp(-((coords - kernel_size // 2) ** 2).sum(0) / kernel_size / width_factor) diff /= diff.sum() return diff class BlurMask(nn.Module): def __init__(self, kernel_size=5, width_factor=1): super().__init__() self.filter = nn.Conv2d(1, 1, kernel_size, padding=kernel_size // 2, padding_mode='replicate', bias=False) self.filter.weight.data.copy_(get_gauss_kernel(kernel_size, width_factor=width_factor)) def forward(self, real_img, pred_img, mask): with torch.no_grad(): result = self.filter(mask) * mask return result class EmulatedEDTMask(nn.Module): def __init__(self, dilate_kernel_size=5, blur_kernel_size=5, width_factor=1): super().__init__() self.dilate_filter = nn.Conv2d(1, 1, dilate_kernel_size, padding=dilate_kernel_size// 2, padding_mode='replicate', bias=False) self.dilate_filter.weight.data.copy_(torch.ones(1, 1, dilate_kernel_size, dilate_kernel_size, dtype=torch.float)) self.blur_filter = nn.Conv2d(1, 1, blur_kernel_size, padding=blur_kernel_size // 2, padding_mode='replicate', bias=False) self.blur_filter.weight.data.copy_(get_gauss_kernel(blur_kernel_size, width_factor=width_factor)) def forward(self, real_img, pred_img, mask): with torch.no_grad(): known_mask = 1 - mask dilated_known_mask = (self.dilate_filter(known_mask) > 1).float() result = self.blur_filter(1 - dilated_known_mask) * mask return result class PropagatePerceptualSim(nn.Module): def __init__(self, level=2, max_iters=10, temperature=500, erode_mask_size=3): super().__init__() vgg = torchvision.models.vgg19(pretrained=True).features vgg_avg_pooling = [] for weights in vgg.parameters(): weights.requires_grad = False cur_level_i = 0 for module in vgg.modules(): if module.__class__.__name__ == 'Sequential': continue elif module.__class__.__name__ == 'MaxPool2d': vgg_avg_pooling.append(nn.AvgPool2d(kernel_size=2, stride=2, padding=0)) else: vgg_avg_pooling.append(module) if module.__class__.__name__ == 'ReLU': cur_level_i += 1 if cur_level_i == level: break self.features = nn.Sequential(*vgg_avg_pooling) self.max_iters = max_iters self.temperature = temperature self.do_erode = erode_mask_size > 0 if self.do_erode: self.erode_mask = nn.Conv2d(1, 1, erode_mask_size, padding=erode_mask_size // 2, bias=False) self.erode_mask.weight.data.fill_(1) def forward(self, real_img, pred_img, mask): with torch.no_grad(): real_img = (real_img - IMAGENET_MEAN.to(real_img)) / IMAGENET_STD.to(real_img) real_feats = self.features(real_img) vertical_sim = torch.exp(-(real_feats[:, :, 1:] - real_feats[:, :, :-1]).pow(2).sum(1, keepdim=True) / self.temperature) horizontal_sim = torch.exp(-(real_feats[:, :, :, 1:] - real_feats[:, :, :, :-1]).pow(2).sum(1, keepdim=True) / self.temperature) mask_scaled = F.interpolate(mask, size=real_feats.shape[-2:], mode='bilinear', align_corners=False) if self.do_erode: mask_scaled = (self.erode_mask(mask_scaled) > 1).float() cur_knowness = 1 - mask_scaled for iter_i in range(self.max_iters): new_top_knowness = F.pad(cur_knowness[:, :, :-1] * vertical_sim, (0, 0, 1, 0), mode='replicate') new_bottom_knowness = F.pad(cur_knowness[:, :, 1:] * vertical_sim, (0, 0, 0, 1), mode='replicate') new_left_knowness = F.pad(cur_knowness[:, :, :, :-1] * horizontal_sim, (1, 0, 0, 0), mode='replicate') new_right_knowness = F.pad(cur_knowness[:, :, :, 1:] * horizontal_sim, (0, 1, 0, 0), mode='replicate') new_knowness = torch.stack([new_top_knowness, new_bottom_knowness, new_left_knowness, new_right_knowness], dim=0).max(0).values cur_knowness = torch.max(cur_knowness, new_knowness) cur_knowness = F.interpolate(cur_knowness, size=mask.shape[-2:], mode='bilinear') result = torch.min(mask, 1 - cur_knowness) return result def make_mask_distance_weighter(kind='none', **kwargs): if kind == 'none': return dummy_distance_weighter if kind == 'blur': return BlurMask(**kwargs) if kind == 'edt': return EmulatedEDTMask(**kwargs) if kind == 'pps': return PropagatePerceptualSim(**kwargs) raise ValueError(f'Unknown mask distance weighter kind {kind}')