import torch from annotator.mmpkg.mmcv.cnn import NonLocal2d from torch import nn from ..builder import HEADS from .fcn_head import FCNHead class DisentangledNonLocal2d(NonLocal2d): """Disentangled Non-Local Blocks. Args: temperature (float): Temperature to adjust attention. Default: 0.05 """ def __init__(self, *arg, temperature, **kwargs): super().__init__(*arg, **kwargs) self.temperature = temperature self.conv_mask = nn.Conv2d(self.in_channels, 1, kernel_size=1) def embedded_gaussian(self, theta_x, phi_x): """Embedded gaussian with temperature.""" # NonLocal2d pairwise_weight: [N, HxW, HxW] pairwise_weight = torch.matmul(theta_x, phi_x) if self.use_scale: # theta_x.shape[-1] is `self.inter_channels` pairwise_weight /= theta_x.shape[-1]**0.5 pairwise_weight /= self.temperature pairwise_weight = pairwise_weight.softmax(dim=-1) return pairwise_weight def forward(self, x): # x: [N, C, H, W] n = x.size(0) # g_x: [N, HxW, C] g_x = self.g(x).view(n, self.inter_channels, -1) g_x = g_x.permute(0, 2, 1) # theta_x: [N, HxW, C], phi_x: [N, C, HxW] if self.mode == 'gaussian': theta_x = x.view(n, self.in_channels, -1) theta_x = theta_x.permute(0, 2, 1) if self.sub_sample: phi_x = self.phi(x).view(n, self.in_channels, -1) else: phi_x = x.view(n, self.in_channels, -1) elif self.mode == 'concatenation': theta_x = self.theta(x).view(n, self.inter_channels, -1, 1) phi_x = self.phi(x).view(n, self.inter_channels, 1, -1) else: theta_x = self.theta(x).view(n, self.inter_channels, -1) theta_x = theta_x.permute(0, 2, 1) phi_x = self.phi(x).view(n, self.inter_channels, -1) # subtract mean theta_x -= theta_x.mean(dim=-2, keepdim=True) phi_x -= phi_x.mean(dim=-1, keepdim=True) pairwise_func = getattr(self, self.mode) # pairwise_weight: [N, HxW, HxW] pairwise_weight = pairwise_func(theta_x, phi_x) # y: [N, HxW, C] y = torch.matmul(pairwise_weight, g_x) # y: [N, C, H, W] y = y.permute(0, 2, 1).contiguous().reshape(n, self.inter_channels, *x.size()[2:]) # unary_mask: [N, 1, HxW] unary_mask = self.conv_mask(x) unary_mask = unary_mask.view(n, 1, -1) unary_mask = unary_mask.softmax(dim=-1) # unary_x: [N, 1, C] unary_x = torch.matmul(unary_mask, g_x) # unary_x: [N, C, 1, 1] unary_x = unary_x.permute(0, 2, 1).contiguous().reshape( n, self.inter_channels, 1, 1) output = x + self.conv_out(y + unary_x) return output @HEADS.register_module() class DNLHead(FCNHead): """Disentangled Non-Local Neural Networks. This head is the implementation of `DNLNet `_. Args: reduction (int): Reduction factor of projection transform. Default: 2. use_scale (bool): Whether to scale pairwise_weight by sqrt(1/inter_channels). Default: False. mode (str): The nonlocal mode. Options are 'embedded_gaussian', 'dot_product'. Default: 'embedded_gaussian.'. temperature (float): Temperature to adjust attention. Default: 0.05 """ def __init__(self, reduction=2, use_scale=True, mode='embedded_gaussian', temperature=0.05, **kwargs): super(DNLHead, self).__init__(num_convs=2, **kwargs) self.reduction = reduction self.use_scale = use_scale self.mode = mode self.temperature = temperature self.dnl_block = DisentangledNonLocal2d( in_channels=self.channels, reduction=self.reduction, use_scale=self.use_scale, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, mode=self.mode, temperature=self.temperature) def forward(self, inputs): """Forward function.""" x = self._transform_inputs(inputs) output = self.convs[0](x) output = self.dnl_block(output) output = self.convs[1](output) if self.concat_input: output = self.conv_cat(torch.cat([x, output], dim=1)) output = self.cls_seg(output) return output