import torch from annotator.mmpkg.mmcv.cnn import ContextBlock from ..builder import HEADS from .fcn_head import FCNHead @HEADS.register_module() class GCHead(FCNHead): """GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond. This head is the implementation of `GCNet `_. Args: ratio (float): Multiplier of channels ratio. Default: 1/4. pooling_type (str): The pooling type of context aggregation. Options are 'att', 'avg'. Default: 'avg'. fusion_types (tuple[str]): The fusion type for feature fusion. Options are 'channel_add', 'channel_mul'. Default: ('channel_add',) """ def __init__(self, ratio=1 / 4., pooling_type='att', fusion_types=('channel_add', ), **kwargs): super(GCHead, self).__init__(num_convs=2, **kwargs) self.ratio = ratio self.pooling_type = pooling_type self.fusion_types = fusion_types self.gc_block = ContextBlock( in_channels=self.channels, ratio=self.ratio, pooling_type=self.pooling_type, fusion_types=self.fusion_types) def forward(self, inputs): """Forward function.""" x = self._transform_inputs(inputs) output = self.convs[0](x) output = self.gc_block(output) output = self.convs[1](output) if self.concat_input: output = self.conv_cat(torch.cat([x, output], dim=1)) output = self.cls_seg(output) return output