# https://github.com/advimman/lama import yaml import torch from omegaconf import OmegaConf import numpy as np from einops import rearrange import os from modules import devices from annotator.annotator_path import models_path from annotator.lama.saicinpainting.training.trainers import load_checkpoint class LamaInpainting: model_dir = os.path.join(models_path, "lama") def __init__(self): self.model = None self.device = devices.get_device_for("controlnet") def load_model(self): remote_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/ControlNetLama.pth" modelpath = os.path.join(self.model_dir, "ControlNetLama.pth") if not os.path.exists(modelpath): from basicsr.utils.download_util import load_file_from_url load_file_from_url(remote_model_path, model_dir=self.model_dir) config_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'config.yaml') cfg = yaml.safe_load(open(config_path, 'rt')) cfg = OmegaConf.create(cfg) cfg.training_model.predict_only = True cfg.visualizer.kind = 'noop' self.model = load_checkpoint(cfg, os.path.abspath(modelpath), strict=False, map_location='cpu') self.model = self.model.to(self.device) self.model.eval() def unload_model(self): if self.model is not None: self.model.cpu() def __call__(self, input_image): if self.model is None: self.load_model() self.model.to(self.device) color = np.ascontiguousarray(input_image[:, :, 0:3]).astype(np.float32) / 255.0 mask = np.ascontiguousarray(input_image[:, :, 3:4]).astype(np.float32) / 255.0 with torch.no_grad(): color = torch.from_numpy(color).float().to(self.device) mask = torch.from_numpy(mask).float().to(self.device) mask = (mask > 0.5).float() color = color * (1 - mask) image_feed = torch.cat([color, mask], dim=2) image_feed = rearrange(image_feed, 'h w c -> 1 c h w') result = self.model(image_feed)[0] result = rearrange(result, 'c h w -> h w c') result = result * mask + color * (1 - mask) result *= 255.0 return result.detach().cpu().numpy().clip(0, 255).astype(np.uint8)