import os import cv2 import numpy as np import torch from einops import rearrange from .zoedepth.models.zoedepth.zoedepth_v1 import ZoeDepth from .zoedepth.utils.config import get_config from annotator.annotator_path import models_path, DEVICE class ZoeDetector: model_dir = os.path.join(models_path, "zoedepth") def __init__(self): self.model = None self.device = DEVICE def load_model(self): remote_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/ZoeD_M12_N.pt" modelpath = os.path.join(self.model_dir, "ZoeD_M12_N.pt") if not os.path.exists(modelpath): from basicsr.utils.download_util import load_file_from_url load_file_from_url(remote_model_path, model_dir=self.model_dir) conf = get_config("zoedepth", "infer") model = ZoeDepth.build_from_config(conf) model.load_state_dict(torch.load(modelpath, map_location=model.device)['model']) model.eval() self.model = model.to(self.device) def unload_model(self): if self.model is not None: self.model.cpu() def __call__(self, input_image): if self.model is None: self.load_model() self.model.to(self.device) assert input_image.ndim == 3 image_depth = input_image with torch.no_grad(): image_depth = torch.from_numpy(image_depth).float().to(self.device) image_depth = image_depth / 255.0 image_depth = rearrange(image_depth, 'h w c -> 1 c h w') depth = self.model.infer(image_depth) depth = depth[0, 0].cpu().numpy() vmin = np.percentile(depth, 2) vmax = np.percentile(depth, 85) depth -= vmin depth /= vmax - vmin depth = 1.0 - depth depth_image = (depth * 255.0).clip(0, 255).astype(np.uint8) return depth_image