Spaces:
Runtime error
Runtime error
File size: 2,603 Bytes
f0fa8ce 3a98e6b e1eecef 3a98e6b e1eecef 3a98e6b f0fa8ce e1eecef 3a98e6b e1eecef 3a98e6b 383fa96 3a98e6b e1eecef 9622968 e1eecef 9622968 3a98e6b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
import gradio as gr
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
import requests, re, base64
from PIL import Image
from io import BytesIO
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-small-printed")
model = VisionEncoderDecoderModel.from_pretrained("pENrknSoysneed/8kun-captcha-ocr-meme")
# # load image examples
# urls = [
# 'https://storage.googleapis.com/trocr-captcha.appspot.com/captcha_images_v2/nfcb5.png',
# 'https://storage.googleapis.com/trocr-captcha.appspot.com/captcha_images_v2/p57fn.png',
# 'https://storage.googleapis.com/trocr-captcha.appspot.com/captcha_images_v2/w2yp7.png',
# 'https://storage.googleapis.com/trocr-captcha.appspot.com/captcha_images_v2/pme86.png',
# 'https://storage.googleapis.com/trocr-captcha.appspot.com/captcha_images_v2/w4nfx.png',
# 'https://storage.googleapis.com/trocr-captcha.appspot.com/captcha_images_v2/nf8b8.png'
# ]
# for idx, url in enumerate(urls):
# image = Image.open(requests.get(url, stream=True).raw)
# image.save(f"image_{idx}.png")
def process_image(image):
# prepare image
image_data = re.sub('^data:image/.+;base64,', '', image)
im = Image.open(BytesIO(base64.b64decode(image_data)))
#Take's the picture
pixel_values = processor(im, return_tensors="pt").pixel_values
# generate (no beam search)
generated_ids = model.generate(pixel_values)
# decode
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
return generated_text
title = "8kun captcha solver 1 in 8"
description = "Due to events. in 8chan staff moderation. I am attacking it. The gamergate shitposting days are over. and so is 8chan."
# article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2109.10282'>TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models</a> | <a href='https://github.com/microsoft/unilm/tree/master/trocr'>Github Repo</a></p>"
# examples =[["image_0.png"], ["image_1.png"], ["image_2.png"], ["image_3.png"], ["image_4.png"], ["image_5.png"]]
#css = """.output_image, .input_image {height: 600px !important}"""
iface = gr.Interface(fn=process_image,
# inputs=gr.inputs.Image(type="pil"),
inputs=gr.Textbox(placeholder="base64 string (right-click => copy-link) ..."),
outputs=gr.outputs.Textbox(),
title=title,
description=description,
# article=article,
# examples=examples
)
iface.launch(debug=True) |