import os # os.system('pip install paddlepaddle') # for cpu enviroment os.system('pip install paddlepaddle-gpu==2.4.2.post117 -f https://www.paddlepaddle.org.cn/whl/linux/mkl/avx/stable.html') os.system('pip install paddlenlp>=2.5.2') os.system('pip install ppdiffusers>=0.14.0') import gradio as gr from ppdiffusers import StableDiffusionPipeline # 通过git获取仓库模型,并读取 # import git # 获取模型参数 # repo = git.Repo.clone_from(url='https://huggingface.co/Liyulingyue/Neolle_Face_Generator', to_path="./dream_outputs") # 加载模型 # model_path = "dream_outputs" # pipe = StableDiffusionPipeline.from_pretrained(model_path) pipe = StableDiffusionPipeline.from_pretrained("Liyulingyue/Neolle_Face_Generator", from_hf_hub=True) def generate_images(prompt, num_inference_steps, guidance_scale): # num_inference_steps to number try: infer_steps = int(num_inference_steps) except: infer_steps = 50 # guidance_scale to number try: gui_scale = float(guidance_scale) except: gui_scale = 7.5 image = pipe(prompt, num_inference_steps=infer_steps,guidance_scale=gui_scale).images[0] # image = os.getcwd() return image with gr.Blocks() as demo: gr.Markdown( """ # 诺艾尔生成器 基于 Linaqruf/anything-v3.0 训练,采用DreamBooth的技术并使用a photo of Neolle文本进行了训练。用于微调的图片共10张,均为原神角色诺艾尔,batch_size取1,学习率是5e-6,共训练1000步。 Hugging face的CPU环境num_inference_steps=50时,大约需要运行1200s。在T4 small环境下,一张图大约需要30s到60s。 如果推理结果包含色情内容,会返回一张纯黑图片~ 如果出现纯黑图片请重新运行 欢迎大家从 https://huggingface.co/Liyulingyue/Neolle_Face_Generator 下载模型到本地运行, 20s即可出图, 该链接包含运行示例代码~ ## 输入参数如下: - prompt:提示语 - num_inference_steps: 推理轮次,越高越耗时,能够提高画作结果的精细程度,建议取值50,更高会需要消耗更多的时间,但效果会更好。 - guidance_scale:训练图片的影响度,如果无法满足提示词描述的场景,可以降低该值,建议取值50。 ## 推荐的提示词示例: - Noelle with dark hair, beautiful eyes - Noelle, 20 years old - Noelle with glasses - Noelle with sunglasses - Noelle playing basketball - Noelle with cat ears, blue hair """) gr.Interface(fn=generate_images, inputs=["text","text","text"], outputs="image") if __name__ == "__main__": demo.launch()