File size: 10,286 Bytes
b4741f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import math
import random
import gradio as gr
import torch
from PIL import Image, ImageOps
from diffusers import StableDiffusionInstructPix2PixPipeline
import spaces


help_text = """
Considerations while editing:
1. The Base-Model, trained on the PIPE dataset, is great for some tasks, while the Finetuned-MB-Model, fine-tuned on the MagicBrush dataset, can be better for others. Please try both until you are satisfied.
2. Image CFG controls how much to deviate from the original image. Higher values keep the image more consistent with the original.
3. Text CFG does the opposite. Higher values lead to more changes in the image.
4. Using different seed values will produce varied outputs.
5. Increasing the number of steps can enhance the results.
6. The Stable Diffusion autoencoder struggles with small faces in images.
"""

article = """
<p style='text-align: center'>
<a href='https://arxiv.org/abs/2404.18212' target='_blank'>
Paint by Inpaint: Learning to Add Image Objects by Removing Them First</a>
</p>
"""

description = """
<p style="text-align: center;">
Gradio demo for <strong>Paint by Inpaint: Learning to Add Image Objects by Removing Them First</strong>, visit our <a href='https://rotsteinnoam.github.io/Paint-by-Inpaint/' target='_blank'>project page</a>. <br>
The demo is both for models trained for image object addition using the <a href='https://huggingface.co/datasets/paint-by-inpaint/PIPE' target='_blank'>PIPE dataset</a> along with models trained with other datasets that are meant for general editing. <br>
</p>
"""

#   Base models
object_addition_base_model_id = "paint-by-inpaint/add-base"
general_editing_base_model_id = "paint-by-inpaint/general-base"

#   MagicBrush finetuned models
object_addition_finetuned_model_id = "paint-by-inpaint/add-finetuned-mb"
general_editing_finetuned_model_id = "paint-by-inpaint/general-finetuned-mb"

device = "cuda" if torch.cuda.is_available() else "cpu"

def load_model(model_id):
    return StableDiffusionInstructPix2PixPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to(device)

pipe_object_addition_base = load_model(object_addition_base_model_id)
pipe_object_addition_finetuned = load_model(object_addition_finetuned_model_id)

pipe_general_editing_base = load_model(general_editing_base_model_id)
pipe_general_editing_finetuned = load_model(general_editing_finetuned_model_id)

@spaces.GPU(duration=15)
def generate(
    input_image: Image.Image,
    instruction: str,
    model_choice: int,
    steps: int,
    randomize_seed: bool,
    seed: int,
    text_cfg_scale: float,
    image_cfg_scale: float,
    task_type: str,
):
    seed = random.randint(0, 100000) if randomize_seed else seed
    if task_type == "object_addition":
        pipe = pipe_object_addition_base if model_choice == 0 else pipe_object_addition_finetuned
    else:
        pipe = pipe_general_editing_base if model_choice == 0 else pipe_general_editing_finetuned

    width, height = input_image.size
    factor = 512 / max(width, height)
    factor = math.ceil(min(width, height) * factor / 64) * 64 / min(width, height)
    width = int((width * factor) // 64) * 64
    height = int((height * factor) // 64) * 64
    input_image = ImageOps.fit(input_image, (width, height), method=Image.Resampling.LANCZOS)

    if instruction == "":
        return [input_image, seed]

    generator = torch.manual_seed(seed)
    edited_image = pipe(
        instruction, image=input_image,
        guidance_scale=text_cfg_scale, image_guidance_scale=image_cfg_scale,
        num_inference_steps=steps, generator=generator,
    ).images[0]
    return [seed, text_cfg_scale, image_cfg_scale, edited_image]

def reset():
    return [0, "Randomize Seed", 2024, "Fix CFG", 7.5, 1.5, None]

with gr.Blocks(css=".compact-box .gr-row { margin-bottom: 5px; } .compact-box .gr-number input, .compact-box .gr-radio label { padding: 5px 10px; }") as demo:
    gr.HTML("""
    <div style="text-align: center;">
        <h1 style="font-weight: 900; margin-bottom: 7px;">Paint by Inpaint</h1>
        {description}
    </div>
    """.format(description=description))

    with gr.Tabs():
        with gr.Tab("Object Addition"):
            with gr.Row():
                with gr.Column():
                    input_image = gr.Image(label="Input Image", type="pil", interactive=True)
                    instruction = gr.Textbox(lines=1, label="Addition Instruction", interactive=True, max_lines=1, placeholder="Enter addition instruction here")

                    model_choice = gr.Radio(
                        ["Base-Model", "Finetuned-MB-Model"],
                        value="Base-Model",
                        type="index",
                        label="Choose Model",
                        interactive=True,
                    )

                    with gr.Group(elem_id="compact-box"):
                        with gr.Row():
                            steps = gr.Number(value=50, precision=0, label="Steps", interactive=True)
                            
                            with gr.Column():
                                with gr.Row():
                                    seed = gr.Number(value=2024, precision=0, label="Seed", interactive=True)
                                    randomize_seed = gr.Radio(
                                        ["Fix Seed", "Randomize Seed"],
                                        value="Randomize Seed",
                                        type="index",
                                        show_label=False,
                                        interactive=True,
                                    )
                        
                        with gr.Row():
                            text_cfg_scale = gr.Number(value=7.5, label="Text CFG", interactive=True)
                            image_cfg_scale = gr.Number(value=1.5, label="Image CFG", interactive=True)

                    with gr.Row():
                        generate_button = gr.Button("Generate")
                        reset_button = gr.Button("Reset")

                with gr.Column():
                    edited_image = gr.Image(label="Edited Image", type="pil", interactive=False)

            generate_button.click(
                fn=lambda *args: generate(*args, task_type="object_addition"),
                inputs=[
                    input_image,
                    instruction,
                    model_choice,
                    steps,
                    randomize_seed,
                    seed,
                    text_cfg_scale,
                    image_cfg_scale,
                ],
                outputs=[seed, text_cfg_scale, image_cfg_scale, edited_image],
            )
            reset_button.click(
                fn=reset,
                inputs=[],
                outputs=[steps, randomize_seed, seed, text_cfg_scale, image_cfg_scale, edited_image],
            )

        with gr.Tab("General Editing"):
            with gr.Row():
                with gr.Column():
                    input_image_editing = gr.Image(label="Input Image", type="pil", interactive=True)
                    instruction_editing = gr.Textbox(lines=1, label="Editing Instruction", interactive=True, max_lines=1, placeholder="Enter editing instruction here")

                    model_choice_editing = gr.Radio(
                        ["Base-Model", "Finetuned-MB-Model"],
                        value="Base-Model",
                        type="index",
                        label="Choose Model",
                        interactive=True,
                    )

                    with gr.Group(elem_id="compact-box"):
                        with gr.Row():
                            steps_editing = gr.Number(value=50, precision=0, label="Steps", interactive=True)
                            
                            with gr.Column():
                                with gr.Row():
                                    seed_editing = gr.Number(value=2024, precision=0, label="Seed", interactive=True)
                                    randomize_seed_editing = gr.Radio(
                                        ["Fix Seed", "Randomize Seed"],
                                        value="Randomize Seed",
                                        type="index",
                                        show_label=False,
                                        interactive=True,
                                    )
                        
                        with gr.Row():
                            text_cfg_scale_editing = gr.Number(value=7.5, label="Text CFG", interactive=True)
                            image_cfg_scale_editing = gr.Number(value=1.5, label="Image CFG", interactive=True)

                    with gr.Row():
                        generate_button_editing = gr.Button("Generate")
                        reset_button_editing = gr.Button("Reset")

                with gr.Column():
                    edited_image_editing = gr.Image(label="Edited Image", type="pil", interactive=False)

            generate_button_editing.click(
                fn=lambda *args: generate(*args, task_type="general_editing"),
                inputs=[
                    input_image_editing,
                    instruction_editing,
                    model_choice_editing,
                    steps_editing,
                    randomize_seed_editing,
                    seed_editing,
                    text_cfg_scale_editing,
                    image_cfg_scale_editing,
                ],
                outputs=[seed_editing, text_cfg_scale_editing, image_cfg_scale_editing, edited_image_editing],
            )
            reset_button_editing.click(
                fn=reset,
                inputs=[],
                outputs=[steps_editing, randomize_seed_editing, seed_editing, text_cfg_scale_editing, image_cfg_scale_editing, edited_image_editing],
            )

    gr.Markdown(help_text)

    examples = [
        ["examples/messi.jpeg", "Add a royal silver crown"],
        ["examples/coffee.jpg", "Add steamed milk"],
    ]

    gr.Examples(
        examples=examples,
        inputs=[input_image, instruction],
        outputs=[edited_image],
    )

    gr.HTML(article)

demo.queue()
demo.launch(share=False, max_threads=1)