Spaces:
Runtime error
Runtime error
File size: 5,777 Bytes
53d6474 eb09c16 cad1126 87bd002 e190921 df7209b e190921 f62e022 e190921 f62e022 df7209b 10f8ab8 e190921 df7209b 5929494 32c1b72 1674572 03ba5b4 87bd002 6f8418a dfef0b8 87bd002 6f8418a eb09c16 a8cd504 acf5da7 32c1b72 2471c01 6f8418a 87bd002 1fecc0a e190921 1fecc0a e190921 1fecc0a e190921 d9c479c 1fecc0a e190921 1fecc0a e190921 1fecc0a e190921 1fecc0a e190921 1fecc0a e190921 1fecc0a e190921 1fecc0a e190921 922dead 1fecc0a 922dead 1fecc0a 3b4356d 6f8418a f718f04 e190921 5929494 1674572 f718f04 f8b7c3b f718f04 302d1be 0930360 f8b7c3b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
import gradio as gr
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
import torch
import theme
theme = theme.Theme()
import os
import sys
sys.path.append('../..')
#langchain
from langchain.text_splitter import RecursiveCharacterTextSplitter, CharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQA
from langchain.prompts import ChatPromptTemplate
from langchain.schema import StrOutputParser
from langchain.schema.runnable import Runnable
from langchain.schema.runnable.config import RunnableConfig
from langchain.chains import (
LLMChain, ConversationalRetrievalChain)
from langchain.vectorstores import Chroma
from langchain.memory import ConversationBufferMemory
from langchain.chains import LLMChain
from langchain.prompts.prompt import PromptTemplate
from langchain.prompts.chat import ChatPromptTemplate, SystemMessagePromptTemplate
from langchain.prompts import SystemMessagePromptTemplate, HumanMessagePromptTemplate, ChatPromptTemplate, MessagesPlaceholder
from langchain.document_loaders import PyPDFDirectoryLoader
from pydantic import BaseModel, Field
from langchain.output_parsers import PydanticOutputParser
from langchain_community.llms import HuggingFaceHub
from langchain_community.document_loaders import WebBaseLoader
from pydantic import BaseModel
import shutil
custom_title = "<span style='color: rgb(243, 239, 224);'>Green Greta</span>"
# Cell 1: Image Classification Model
image_pipeline = pipeline(task="image-classification", model="guillen/vit-basura-test1")
def predict_image(input_img):
predictions = image_pipeline(input_img)
return {p["label"]: p["score"] for p in predictions}
image_gradio_app = gr.Interface(
fn=predict_image,
inputs=gr.Image(label="Image", sources=['upload', 'webcam'], type="pil"),
outputs=[gr.Label(label="Result")],
title=custom_title,
theme=theme
)
loader = WebBaseLoader(["https://www.epa.gov/recycle/frequent-questions-recycling", "https://www.whitehorsedc.gov.uk/vale-of-white-horse-district-council/recycling-rubbish-and-waste/lets-get-real-about-recycling/", "https://www.teimas.com/blog/13-preguntas-y-respuestas-sobre-la-ley-de-residuos-07-2022", "https://www.molok.com/es/blog/gestion-de-residuos-solidos-urbanos-rsu-10-dudas-comunes"])
data=loader.load()
# split documents
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1024,
chunk_overlap=150,
length_function=len
)
docs = text_splitter.split_documents(data)
# define embedding
embeddings = HuggingFaceEmbeddings(model_name='thenlper/gte-small')
# create vector database from data
persist_directory = 'docs/chroma/'
# Remove old database files if any
shutil.rmtree(persist_directory, ignore_errors=True)
vectordb = Chroma.from_documents(
documents=docs,
embedding=embeddings,
persist_directory=persist_directory
)
# define retriever
retriever = vectordb.as_retriever(search_kwargs={"k": 2}, search_type="mmr")
class FinalAnswer(BaseModel):
question: str = Field(description="the original question")
answer: str = Field(description="the extracted answer")
# Assuming you have a parser for the FinalAnswer class
parser = PydanticOutputParser(pydantic_object=FinalAnswer)
template = """
Your name is Greta and you are a recycling chatbot with the objective to anwer questions from user in English or Spanish /
Use the following pieces of context to answer the question /
If the question is English answer in English /
If the question is Spanish answer in Spanish /
Do not mention the word context when you answer a question /
Answer the question fully and provide as much relevant detail as possible. Do not cut your response short /
Context: {context}
User: {question}
{format_instructions}
"""
# Create the chat prompt templates
sys_prompt = SystemMessagePromptTemplate.from_template(template)
qa_prompt = ChatPromptTemplate(
messages=[
sys_prompt,
HumanMessagePromptTemplate.from_template("{question}")],
partial_variables={"format_instructions": parser.get_format_instructions()}
)
llm = HuggingFaceHub(
repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1",
task="text-generation",
model_kwargs={
"max_new_tokens": 2000,
"top_k": 30,
"temperature": 0.1,
"repetition_penalty": 1.03
},
)
qa_chain = ConversationalRetrievalChain.from_llm(
llm = llm,
memory = ConversationBufferMemory(llm=llm, memory_key="chat_history", input_key='question', output_key='output'),
retriever = retriever,
verbose = True,
combine_docs_chain_kwargs={'prompt': qa_prompt},
get_chat_history = lambda h : h,
rephrase_question = False,
output_key = 'output',
)
def chat_interface(question,history):
result = qa_chain.invoke({'question': question})
output_string = result['output']
# Find the index of the last occurrence of "answer": in the string
answer_index = output_string.rfind('"answer":')
# Extract the substring starting from the "answer": index
answer_part = output_string[answer_index + len('"answer":'):].strip()
# Find the next occurrence of a double quote to get the start of the answer value
quote_index = answer_part.find('"')
# Extract the answer value between double quotes
answer_value = answer_part[quote_index + 1:answer_part.find('"', quote_index + 1)]
return answer_value
chatbot_gradio_app = gr.ChatInterface(
fn=chat_interface,
title=custom_title
)
# Combine both interfaces into a single app
app = gr.TabbedInterface(
[image_gradio_app, chatbot_gradio_app],
tab_names=["Green Greta Image Classification","Green Greta Chat"],
theme=theme
)
app.queue()
app.launch() |