File size: 5,777 Bytes
53d6474
eb09c16
 
cad1126
 
 
87bd002
e190921
 
 
df7209b
e190921
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f62e022
 
e190921
f62e022
df7209b
10f8ab8
e190921
df7209b
 
 
5929494
32c1b72
 
1674572
03ba5b4
87bd002
6f8418a
 
dfef0b8
87bd002
6f8418a
eb09c16
a8cd504
acf5da7
32c1b72
2471c01
6f8418a
87bd002
1fecc0a
e190921
 
 
1fecc0a
 
e190921
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fecc0a
 
 
 
 
 
 
 
 
e190921
d9c479c
1fecc0a
 
 
 
 
 
 
 
e190921
 
 
1fecc0a
e190921
1fecc0a
 
 
 
e190921
 
 
 
 
1fecc0a
e190921
 
1fecc0a
e190921
 
 
 
 
1fecc0a
e190921
 
 
 
 
1fecc0a
e190921
 
922dead
1fecc0a
 
 
 
 
 
 
 
 
 
 
922dead
1fecc0a
 
 
 
3b4356d
6f8418a
f718f04
e190921
5929494
1674572
 
f718f04
f8b7c3b
f718f04
302d1be
0930360
f8b7c3b
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import gradio as gr
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
import torch
import theme

theme = theme.Theme()

import os
import sys
sys.path.append('../..')

#langchain
from langchain.text_splitter import RecursiveCharacterTextSplitter, CharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQA
from langchain.prompts import ChatPromptTemplate
from langchain.schema import StrOutputParser
from langchain.schema.runnable import Runnable
from langchain.schema.runnable.config import RunnableConfig
from langchain.chains import (
    LLMChain, ConversationalRetrievalChain)
from langchain.vectorstores import Chroma
from langchain.memory import ConversationBufferMemory
from langchain.chains import LLMChain
from langchain.prompts.prompt import PromptTemplate
from langchain.prompts.chat import ChatPromptTemplate, SystemMessagePromptTemplate
from langchain.prompts import SystemMessagePromptTemplate, HumanMessagePromptTemplate, ChatPromptTemplate,  MessagesPlaceholder
from langchain.document_loaders import PyPDFDirectoryLoader
from pydantic import BaseModel, Field
from langchain.output_parsers import PydanticOutputParser
from langchain_community.llms import HuggingFaceHub
from langchain_community.document_loaders import WebBaseLoader

from pydantic import BaseModel
import shutil



custom_title = "<span style='color: rgb(243, 239, 224);'>Green Greta</span>"


# Cell 1: Image Classification Model
image_pipeline = pipeline(task="image-classification", model="guillen/vit-basura-test1")

def predict_image(input_img):
    predictions = image_pipeline(input_img)
    return {p["label"]: p["score"] for p in predictions} 

image_gradio_app = gr.Interface(
    fn=predict_image,
    inputs=gr.Image(label="Image", sources=['upload', 'webcam'], type="pil"),
    outputs=[gr.Label(label="Result")],
    title=custom_title,
    theme=theme
)

loader = WebBaseLoader(["https://www.epa.gov/recycle/frequent-questions-recycling", "https://www.whitehorsedc.gov.uk/vale-of-white-horse-district-council/recycling-rubbish-and-waste/lets-get-real-about-recycling/", "https://www.teimas.com/blog/13-preguntas-y-respuestas-sobre-la-ley-de-residuos-07-2022", "https://www.molok.com/es/blog/gestion-de-residuos-solidos-urbanos-rsu-10-dudas-comunes"])
data=loader.load()
# split documents
text_splitter = RecursiveCharacterTextSplitter(
    chunk_size=1024,
    chunk_overlap=150,
    length_function=len
)
docs = text_splitter.split_documents(data)
# define embedding
embeddings = HuggingFaceEmbeddings(model_name='thenlper/gte-small')
# create vector database from data
persist_directory = 'docs/chroma/'

# Remove old database files if any
shutil.rmtree(persist_directory, ignore_errors=True)
vectordb = Chroma.from_documents(
    documents=docs,
    embedding=embeddings,
    persist_directory=persist_directory
)
# define retriever
retriever = vectordb.as_retriever(search_kwargs={"k": 2}, search_type="mmr")

class FinalAnswer(BaseModel):
    question: str = Field(description="the original question")
    answer: str = Field(description="the extracted answer")

# Assuming you have a parser for the FinalAnswer class
parser = PydanticOutputParser(pydantic_object=FinalAnswer)

template = """
Your name is Greta and you are a recycling chatbot with the objective to anwer questions from user in English or Spanish /
Use the following pieces of context to answer the question /
If the question is English answer in English /
If the question is Spanish answer in Spanish /
Do not mention the word context when you answer a question /
Answer the question fully and provide as much relevant detail as possible. Do not cut your response short /
Context: {context}
User: {question}
{format_instructions}
"""

# Create the chat prompt templates
sys_prompt = SystemMessagePromptTemplate.from_template(template)
qa_prompt = ChatPromptTemplate(
    messages=[
        sys_prompt,
        HumanMessagePromptTemplate.from_template("{question}")],
    partial_variables={"format_instructions": parser.get_format_instructions()}
)
llm = HuggingFaceHub(
    repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1",
    task="text-generation",
    model_kwargs={
        "max_new_tokens": 2000,
        "top_k": 30,
        "temperature": 0.1,
        "repetition_penalty": 1.03
    },
)

qa_chain = ConversationalRetrievalChain.from_llm(
    llm = llm,
    memory = ConversationBufferMemory(llm=llm, memory_key="chat_history", input_key='question', output_key='output'),
    retriever = retriever,
    verbose = True,
    combine_docs_chain_kwargs={'prompt': qa_prompt},
    get_chat_history = lambda h : h,
    rephrase_question = False,
    output_key = 'output',
)

def chat_interface(question,history):
    result = qa_chain.invoke({'question': question})
    output_string = result['output']

    # Find the index of the last occurrence of "answer": in the string
    answer_index = output_string.rfind('"answer":')

    # Extract the substring starting from the "answer": index
    answer_part = output_string[answer_index + len('"answer":'):].strip()

    # Find the next occurrence of a double quote to get the start of the answer value
    quote_index = answer_part.find('"')

    # Extract the answer value between double quotes
    answer_value = answer_part[quote_index + 1:answer_part.find('"', quote_index + 1)]
    
    return answer_value


chatbot_gradio_app = gr.ChatInterface(
    fn=chat_interface,
    title=custom_title
)

# Combine both interfaces into a single app
app = gr.TabbedInterface(
    [image_gradio_app, chatbot_gradio_app],
    tab_names=["Green Greta Image Classification","Green Greta Chat"],
    theme=theme
)

app.queue()
app.launch()