panuthept's picture
rename bge-m3
f05b0f7
import gradio as gr
import pandas as pd
from css_html_js import custom_css
TITLE = """<h1 align="center" id="space-title">🇹🇭 Thai Sentence Embedding Leaderboard</h1>"""
INTRODUCTION_TEXT = """
📐 The 🇹🇭 Thai Sentence Embedding Leaderboard aims to track, rank and evaluate open embedding models on Thai sentence embedding tasks. Source code for evaluation at https://github.com/mrpeerat/Thai-Sentence-Vector-Benchmark, feel free to submit your own score at https://huggingface.co/spaces/panuthept/thai_sentence_embedding_benchmark/discussions.
## Dataset
The evaluation is conducted on 4 tasks across 8 datasets:
1. Semantic Textual Similarity (STS)
- Translated STS-B, contains 1,379 test samples, https://github.com/mrpeerat/Thai-Sentence-Vector-Benchmark
2. Text Classification
- Wisesight, contains 2,671 test samples, https://huggingface.co/datasets/pythainlp/wisesight_sentiment
- Wongnai, contains 6,203 test samples, https://huggingface.co/datasets/Wongnai/wongnai_reviews
- Generated Review, contains 17,453 test samples, https://huggingface.co/datasets/airesearch/generated_reviews_enth
3. Pair Classification
- XNLI (Thai only), contains 3,340 test samples, https://github.com/facebookresearch/XNLI
4. Retrieval
- XQuAD (Thai only), contains 1,190 test samples, https://huggingface.co/datasets/google/xquad
- MIRACL (Thai only), contains 733 test samples, https://huggingface.co/datasets/miracl/miracl
- TyDiQA (Thai only), contains 763 test samples, https://huggingface.co/datasets/chompk/tydiqa-goldp-th
## Metrics
The evaluation metric for each task is as follows:
1. STS: Spearman’s Rank Correlation
2. Text Classification: F1 Score
3. Pair Classification: Average Precision
3. Retrieval: MMR@10
"""
results = [
{
'Model Name': '[XLMR-base](https://huggingface.co/FacebookAI/xlm-roberta-base)',
'Model Size (Million Parameters)': 279,
'Embedding Dimensions': 768,
'Average (8 datasets)': 37.95,
'STS (1 datasets)': 44.48,
'Classification (3 datasets)': 58.42,
'PairClassification (1 datasets)': 57.62,
'Retrieval (3 datasets)': 5.57,
},
{
'Model Name': '[XLMR-large](https://huggingface.co/FacebookAI/xlm-roberta-large)',
'Model Size (Million Parameters)': 561,
'Embedding Dimensions': 1024,
'Average (8 datasets)': 38.59,
'STS (1 datasets)': 38.31,
'Classification (3 datasets)': 59.51,
'PairClassification (1 datasets)': 54.56,
'Retrieval (3 datasets)': 11.80,
},
{
'Model Name': '[WangchanBERTa](https://huggingface.co/airesearch/wangchanberta-base-att-spm-uncased)',
'Model Size (Million Parameters)': 106,
'Embedding Dimensions': 768,
'Average (8 datasets)': 36.34,
'STS (1 datasets)': 21.32,
'Classification (3 datasets)': 55.46,
'PairClassification (1 datasets)': 52.96,
'Retrieval (3 datasets)': 19.49,
},
{
'Model Name': '[PhayaThaiBERT](https://huggingface.co/clicknext/phayathaibert)',
'Model Size (Million Parameters)': 278,
'Embedding Dimensions': 768,
'Average (8 datasets)': 55.38,
'STS (1 datasets)': 51.56,
'Classification (3 datasets)': 59.90,
'PairClassification (1 datasets)': 59.67,
'Retrieval (3 datasets)': 56.31,
},
{
'Model Name': '[MPNet-multilingual](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2)',
'Model Size (Million Parameters)': 278,
'Embedding Dimensions': 768,
'Average (8 datasets)': 66.14,
'STS (1 datasets)': 80.49,
'Classification (3 datasets)': 56.89,
'PairClassification (1 datasets)': 84.14,
'Retrieval (3 datasets)': 64.13,
},
{
'Model Name': '[DistilUSE-multilingual](https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v2)',
'Model Size (Million Parameters)': 135,
'Embedding Dimensions': 512,
'Average (8 datasets)': 51.45,
'STS (1 datasets)': 65.37,
'Classification (3 datasets)': 50.93,
'PairClassification (1 datasets)': 65.94,
'Retrieval (3 datasets)': 42.72,
},
{
'Model Name': '[BGE-M3 (dense only)](https://huggingface.co/BAAI/bge-m3)',
'Model Size (Million Parameters)': 570,
'Embedding Dimensions': 1024,
'Average (8 datasets)': 75.64,
'STS (1 datasets)': 77.22,
'Classification (3 datasets)': 59.95,
'PairClassification (1 datasets)': 79.02,
'Retrieval (3 datasets)': 91.42,
},
{
'Model Name': '[SimCSE-XLMR-base](https://huggingface.co/kornwtp/simcse-model-XLMR)',
'Model Size (Million Parameters)': 279,
'Embedding Dimensions': 768,
'Average (8 datasets)': 53.83,
'STS (1 datasets)': 63.98,
'Classification (3 datasets)': 49.44,
'PairClassification (1 datasets)': 61.87,
'Retrieval (3 datasets)': 54.17,
},
{
'Model Name': '[SimCSE-WangchanBERTa](https://huggingface.co/kornwtp/simcse-model-wangchanberta)',
'Model Size (Million Parameters)': 106,
'Embedding Dimensions': 768,
'Average (8 datasets)': 54.01,
'STS (1 datasets)': 60.73,
'Classification (3 datasets)': 56.71,
'PairClassification (1 datasets)': 59.14,
'Retrieval (3 datasets)': 51.05,
},
{
'Model Name': '[SimCSE-PhayaThaiBERT](https://huggingface.co/kornwtp/simcse-model-phayathaibert)',
'Model Size (Million Parameters)': 278,
'Embedding Dimensions': 768,
'Average (8 datasets)': 60.02,
'STS (1 datasets)': 67.82,
'Classification (3 datasets)': 53.50,
'PairClassification (1 datasets)': 63.35,
'Retrieval (3 datasets)': 66.05,
},
{
'Model Name': '[SCT-XLMR-base](https://huggingface.co/kornwtp/SCT-model-XLMR)',
'Model Size (Million Parameters)': 279,
'Embedding Dimensions': 768,
'Average (8 datasets)': 57.69,
'STS (1 datasets)': 68.91,
'Classification (3 datasets)': 55.93,
'PairClassification (1 datasets)': 66.49,
'Retrieval (3 datasets)': 54.90,
},
{
'Model Name': '[SCT-WangchanBERTa](https://huggingface.co/kornwtp/SCT-model-wangchanberta)',
'Model Size (Million Parameters)': 106,
'Embedding Dimensions': 768,
'Average (8 datasets)': 62.22,
'STS (1 datasets)': 71.35,
'Classification (3 datasets)': 59.19,
'PairClassification (1 datasets)': 67.04,
'Retrieval (3 datasets)': 63.83,
},
{
'Model Name': '[SCT-PhayaThaiBERT](https://huggingface.co/kornwtp/SCT-model-phayathaibert)',
'Model Size (Million Parameters)': 278,
'Embedding Dimensions': 768,
'Average (8 datasets)': 63.28,
'STS (1 datasets)': 74.08,
'Classification (3 datasets)': 58.77,
'PairClassification (1 datasets)': 65.87,
'Retrieval (3 datasets)': 66.20,
},
{
'Model Name': '[SCT-KD-XLMR-base](https://huggingface.co/kornwtp/SCT-KD-model-XLMR)',
'Model Size (Million Parameters)': 279,
'Embedding Dimensions': 768,
'Average (8 datasets)': 65.37,
'STS (1 datasets)': 78.78,
'Classification (3 datasets)': 56.87,
'PairClassification (1 datasets)': 79.78,
'Retrieval (3 datasets)': 65.02,
},
{
'Model Name': '[SCT-KD-WangchanBERTa](https://huggingface.co/kornwtp/SCT-KD-model-wangchanberta)',
'Model Size (Million Parameters)': 106,
'Embedding Dimensions': 768,
'Average (8 datasets)': 63.55,
'STS (1 datasets)': 77.77,
'Classification (3 datasets)': 56.33,
'PairClassification (1 datasets)': 77.04,
'Retrieval (3 datasets)': 62.38,
},
{
'Model Name': '[SCT-KD-PhayaThaiBERT](https://huggingface.co/kornwtp/SCT-KD-model-phayathaibert)',
'Model Size (Million Parameters)': 278,
'Embedding Dimensions': 768,
'Average (8 datasets)': 66.00,
'STS (1 datasets)': 77.80,
'Classification (3 datasets)': 57.27,
'PairClassification (1 datasets)': 77.84,
'Retrieval (3 datasets)': 67.94,
},
{
'Model Name': '[ConGen-XLMR-base](https://huggingface.co/kornwtp/ConGen-model-XLMR)',
'Model Size (Million Parameters)': 279,
'Embedding Dimensions': 768,
'Average (8 datasets)': 66.84,
'STS (1 datasets)': 79.69,
'Classification (3 datasets)': 56.90,
'PairClassification (1 datasets)': 81.47,
'Retrieval (3 datasets)': 68.03,
},
{
'Model Name': '[ConGen-WangchanBERTa](https://huggingface.co/kornwtp/ConGen-model-wangchanberta)',
'Model Size (Million Parameters)': 106,
'Embedding Dimensions': 768,
'Average (8 datasets)': 67.17,
'STS (1 datasets)': 78.78,
'Classification (3 datasets)': 58.16,
'PairClassification (1 datasets)': 82.43,
'Retrieval (3 datasets)': 67.66,
},
{
'Model Name': '[ConGen-PhayaThaiBERT](https://huggingface.co/kornwtp/ConGen-model-phayathaibert)',
'Model Size (Million Parameters)': 278,
'Embedding Dimensions': 768,
'Average (8 datasets)': 66.94,
'STS (1 datasets)': 78.90,
'Classification (3 datasets)': 57.63,
'PairClassification (1 datasets)': 81.01,
'Retrieval (3 datasets)': 68.04,
},
{
'Model Name': '[E5-Mistral-7B-Instruct](https://huggingface.co/intfloat/e5-mistral-7b-instruct)',
'Model Size (Million Parameters)': 7110,
'Embedding Dimensions': 4096,
'Average (8 datasets)': 71.94,
'STS (1 datasets)': 75.52,
'Classification (3 datasets)': 60.46,
'PairClassification (1 datasets)': 68.04,
'Retrieval (3 datasets)': 86.80,
},
{
'Model Name': '[gte-Qwen2-7B-Instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct)',
'Model Size (Million Parameters)': 7610,
'Embedding Dimensions': 3584,
'Average (8 datasets)': 49.31,
'STS (1 datasets)': 51.60,
'Classification (3 datasets)': 57.55,
'PairClassification (1 datasets)': 61.73,
'Retrieval (3 datasets)': 38.31,
},
{
'Model Name': '[GritLM-7B](https://huggingface.co/GritLM/GritLM-7B)',
'Model Size (Million Parameters)': 7240,
'Embedding Dimensions': 4096,
'Average (8 datasets)': 42.38,
'STS (1 datasets)': 45.50,
'Classification (3 datasets)': 56.83,
'PairClassification (1 datasets)': 56.40,
'Retrieval (3 datasets)': 22.79,
},
{
'Model Name': '[Llama3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B)',
'Model Size (Million Parameters)': 8030,
'Embedding Dimensions': 4096,
'Average (8 datasets)': 51.63,
'STS (1 datasets)': 49.48,
'Classification (3 datasets)': 58.54,
'PairClassification (1 datasets)': 57.76,
'Retrieval (3 datasets)': 47.93,
},
{
'Model Name': '[Llama3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)',
'Model Size (Million Parameters)': 8030,
'Embedding Dimensions': 4096,
'Average (8 datasets)': 52.81,
'STS (1 datasets)': 50.63,
'Classification (3 datasets)': 58.85,
'PairClassification (1 datasets)': 58.04,
'Retrieval (3 datasets)': 50.38,
},
{
'Model Name': '[Llama3.1-8B](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B)',
'Model Size (Million Parameters)': 8030,
'Embedding Dimensions': 4096,
'Average (8 datasets)': 50.36,
'STS (1 datasets)': 49.98,
'Classification (3 datasets)': 58.18,
'PairClassification (1 datasets)': 58.12,
'Retrieval (3 datasets)': 43.64,
},
{
'Model Name': '[Llama3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct)',
'Model Size (Million Parameters)': 8030,
'Embedding Dimensions': 4096,
'Average (8 datasets)': 50.06,
'STS (1 datasets)': 49.76,
'Classification (3 datasets)': 57.90,
'PairClassification (1 datasets)': 57.47,
'Retrieval (3 datasets)': 43.63,
},
{
'Model Name': '[Typhoon-8B-Instruct](https://huggingface.co/scb10x/llama-3-typhoon-v1.5-8b-instruct)',
'Model Size (Million Parameters)': 8030,
'Embedding Dimensions': 4096,
'Average (8 datasets)': 53.51,
'STS (1 datasets)': 51.46,
'Classification (3 datasets)': 58.91,
'PairClassification (1 datasets)': 58.05,
'Retrieval (3 datasets)': 52.65,
},
{
'Model Name': 'Cohere-embed-multilingual-v2.0',
'Model Size (Million Parameters)': "N/A",
'Embedding Dimensions': 768,
'Average (8 datasets)': 68.01,
'STS (1 datasets)': 68.03,
'Classification (3 datasets)': 57.31,
'PairClassification (1 datasets)': 62.03,
'Retrieval (3 datasets)': 85.23,
},
{
'Model Name': 'Cohere-embed-multilingual-v3.0',
'Model Size (Million Parameters)': "N/A",
'Embedding Dimensions': 1024,
'Average (8 datasets)': 74.86,
'STS (1 datasets)': 77.87,
'Classification (3 datasets)': 59.96,
'PairClassification (1 datasets)': 73.28,
'Retrieval (3 datasets)': 91.43,
},
{
'Model Name': 'Openai-text-embedding-3-large',
'Model Size (Million Parameters)': "N/A",
'Embedding Dimensions': 3072,
'Average (8 datasets)': 69.26,
'STS (1 datasets)': 70.46,
'Classification (3 datasets)': 58.79,
'PairClassification (1 datasets)': 67.33,
'Retrieval (3 datasets)': 83.87,
},
]
# Calculate average
results = [
{
**result,
'Average (8 datasets)': round(sum(
result.get(key, 0) for key in ['STS (1 datasets)', 'Classification (3 datasets)', 'PairClassification (1 datasets)', 'Retrieval (3 datasets)']
) / 4, 2),
}
for result in results
]
# Sort by average
results = sorted(results, key=lambda x: x['Average (8 datasets)'], reverse=True)
data = pd.DataFrame(results)
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
gr.DataFrame(data, datatype = 'markdown')
demo.launch()