File size: 26,788 Bytes
2609d5c
fcfffd7
2609d5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62f31c8
 
8ec911f
2609d5c
01dcd9c
 
2609d5c
068fdbc
2609d5c
068fdbc
 
 
2609d5c
068fdbc
 
2609d5c
068fdbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78a2dc6
068fdbc
 
2609d5c
 
 
 
 
 
 
 
 
 
 
 
 
 
41a5ede
2609d5c
 
 
41a5ede
2609d5c
 
 
 
 
d48ef09
2609d5c
 
 
8ec911f
 
 
 
 
 
 
 
2609d5c
 
62f31c8
2609d5c
a743ea2
2609d5c
 
558076d
 
 
 
 
f56051d
 
068fdbc
f56051d
fcfffd7
62f31c8
 
2609d5c
d48ef09
 
2609d5c
d48ef09
2609d5c
 
 
a743ea2
2609d5c
 
d48ef09
 
 
 
 
2609d5c
8ec911f
2609d5c
 
 
41a5ede
2609d5c
8ec911f
 
 
 
2609d5c
 
8ec911f
41a5ede
 
 
 
 
 
 
 
 
 
8ec911f
62f31c8
 
 
 
8ec911f
 
 
 
 
2609d5c
 
8ec911f
 
 
 
2609d5c
8ec911f
 
 
 
 
2609d5c
 
8ec911f
 
2609d5c
8ec911f
 
 
2609d5c
8ec911f
 
 
2609d5c
8ec911f
 
 
d48ef09
8ec911f
 
 
 
2609d5c
8ec911f
2609d5c
8ec911f
 
2609d5c
8ec911f
 
 
 
 
62f31c8
 
 
8ec911f
 
 
 
 
62f31c8
 
2609d5c
8ec911f
 
 
 
 
 
62f31c8
 
 
8ec911f
 
 
 
 
2609d5c
8ec911f
 
2609d5c
8ec911f
068fdbc
8ec911f
2609d5c
8ec911f
 
62f31c8
8ec911f
 
 
 
 
 
a5b4b9a
8ec911f
 
 
 
 
 
 
2609d5c
45bfe40
8ec911f
 
 
 
 
 
2609d5c
8ec911f
 
d48ef09
8ec911f
 
a5b4b9a
8ec911f
 
a5b4b9a
8ec911f
 
2609d5c
8ec911f
 
2609d5c
62f31c8
 
8ec911f
 
 
 
 
 
62f31c8
8ec911f
 
 
 
 
2609d5c
851d900
 
8ec911f
 
 
 
62f31c8
8ec911f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2609d5c
41a5ede
 
2609d5c
41a5ede
 
 
2609d5c
 
 
8ec911f
2609d5c
 
 
 
 
 
558076d
fcfffd7
 
 
2609d5c
 
d48ef09
62f31c8
d48ef09
62f31c8
d48ef09
 
 
 
 
 
 
62f31c8
d48ef09
 
 
 
 
 
2609d5c
d48ef09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2609d5c
 
d48ef09
2609d5c
d48ef09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62f31c8
d48ef09
 
62f31c8
 
 
2609d5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
import os
from tracemalloc import start
from huggingface_hub import login
from huggingface_hub import hf_hub_download

import keras




from collections import OrderedDict
import hashlib
import random
import traceback

import numpy as np
from datetime import datetime, timedelta



import os

from RequestModel import PredictRequest
from app import TextRequest
from us_stock import find_stock_codes_or_names, get_last_minute_stock_price
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# 设置环境变量,指定 Hugging Face 缓存路径
os.environ["HF_HOME"] = "/tmp/huggingface"

import threading

# 添加线程锁
model_lock = threading.Lock()
model_initialized = False

# 加载模型
model = None

def get_model():
    global model, model_initialized
    if not model_initialized:
        with model_lock:
            if not model_initialized:  # 双重检查锁定
                # 从环境变量中获取 Hugging Face token
                hf_token = os.environ.get("HF_Token")

                
                # 使用 Hugging Face API token 登录 (确保只读权限)
                if hf_token:
                    login(token=hf_token)
                else:
                    raise ValueError("Hugging Face token not found in environment variables.")

                # 下载模型到本地
                model_path = hf_hub_download(repo_id="parkerjj/BuckLake-Stock-Model", 
                                            filename="stock_prediction_model_1118_final.keras", 
                                            use_auth_token=hf_token)

                # 使用 Keras 加载模型
                os.environ["KERAS_BACKEND"] = "jax"
                print(f"Loading saved model from {model_path}...")
                from model_build import TransformerEncoder, ExpandDimension, ConcatenateTimesteps
                model = keras.saving.load_model(model_path, custom_objects={
                    "TransformerEncoder": TransformerEncoder, 
                    "ExpandDimension": ExpandDimension,
                    "ConcatenateTimesteps": ConcatenateTimesteps
                })

                # model.summary()
                model_initialized = True
    return model



# 创建缓存字典
# 创建缓存字典,使用 OrderedDict 以维护插入顺序
prediction_cache = OrderedDict()

# 缓存最大大小
CACHE_MAX_SIZE = 512




# 生成唯一键值函数
def generate_key(lemmatized_entry, symbol: str = ""):
    # 获取当前日期,例如 '20241010'
    current_date = datetime.now().strftime('%Y%m%d')
    # 将 lemmatized_entry 中的单词连接成字符串,并与当前日期组合生成 MD5 哈希值
    combined_text = f"{''.join(lemmatized_entry)}{current_date}{symbol}"
    return hashlib.md5(combined_text.encode()).hexdigest()

# 生成符合正态分布的伪精准度值
def generate_fake_accuracy():
    # 正态分布随机数,均值 0.6,标准差 0.1,限制在 0.4 到 0.8 之间
    fake_accuracy = np.clip(np.random.normal(0.7, 0.1), 0.6, 0.9)
    return round(fake_accuracy, 5)


def ensure_fixed_shape(data, shape, variable_name=""):
    data = np.array(data)
    if data.shape != shape:
        fixed_data = np.full(shape, -1)
        min_shape = tuple(min(s1, s2) for s1, s2 in zip(data.shape, shape))
        fixed_data[:min_shape[0], :min_shape[1], :min_shape[2]] = data[:min_shape[0], :min_shape[1], :min_shape[2]]
        return fixed_data
    return data


def predict(text: str, stock_codes: list):
    from tensorflow.keras.preprocessing.sequence import pad_sequences # type: ignore
    from preprocess import get_document_vector, get_stock_info, process_entities, process_pos_tags, processing_entry

    try:
        if text.strip() == "" and not stock_codes:
            return []
        if stock_codes and text.strip() == "":
            text = "EMPTY_TEXT"
            
        print(f"Input Text Length: {len(text)}, Start with: {text[:200] if len(text) > 200 else text}")
        print("Input stock codes:", stock_codes)
        print("Current Time:", datetime.now())

        start_time = datetime.now()
        input_text = text
        affected_stock_codes = stock_codes

        if not input_text.strip():
            raise ValueError("Input text is empty or contains only whitespace.")

        #print(f"predict() Input text: {input_text}")

        # 使用预处理函数处理文本
        # 解包 processed_entry 中的各个值
        lemmatized_entry, pos_tag, ner, _ , sentiment_score = processing_entry(input_text)

        # 分别打印每个变量,便于调试
        #print("Lemmatized Entry:", lemmatized_entry)
        #print("POS Tagging:", pos_tag)
        #print("Named Entity Recognition:", ner)
        #print("Dependency Parsing:", dependency_parsing)
        #print("Sentiment Score:", sentiment_score)

        if affected_stock_codes is None or not affected_stock_codes:
            # 从 NER 结果中提取相关的股票代码或公司名称
            affected_stock_codes = find_stock_codes_or_names(ner)




        # Final Result
        final_result_list = []

        # 调用 get_stock_info 函数

        for stock_code in affected_stock_codes:

            # 生成唯一键值
            cache_key = generate_key(lemmatized_entry, stock_code)
            # 检查缓存中是否已有结果
            if input_text != "EMPTY_TEXT" and cache_key in prediction_cache:
                print(f"Cache hit: {cache_key}" )
                # 从缓存中获取结果并添加到最终结果列表
                final_result_list.append(prediction_cache[cache_key])
                continue
            
            previous_stock_history, _, previous_stock_inx_index_history, previous_stock_dj_index_history, previous_stock_ixic_index_history, previous_stock_ndx_index_history, _, _, _, _ = get_stock_info(stock_code)




            previous_stock_history = ensure_fixed_shape(previous_stock_history, (1, 30, 6), "previous_stock_history")
            previous_stock_inx_index_history = ensure_fixed_shape(previous_stock_inx_index_history, (1, 30, 6), "previous_stock_inx_index_history")
            previous_stock_dj_index_history = ensure_fixed_shape(previous_stock_dj_index_history, (1, 30, 6), "previous_stock_dj_index_history")
            previous_stock_ixic_index_history = ensure_fixed_shape(previous_stock_ixic_index_history, (1, 30, 6), "previous_stock_ixic_index_history")
            previous_stock_ndx_index_history = ensure_fixed_shape(previous_stock_ndx_index_history, (1, 30, 6), "previous_stock_ndx_index_history")


            

            # 3. 将特征转换为适合模型输入的形状
            # 这里假设文本、POS、实体识别等是向量,时间序列特征是 (sequence_length, feature_dim) 的形状

            
            # POS 和 NER 特征处理
            # 只取 POS Tagging 的第二部分(即 POS 标签的字母形式)进行处理
            pos_results = [process_pos_tags(pos_tag[1])[0]]  # 传入 POS 标签列表
            ner_results = [process_entities(ner)[0]]         # 假设是单个输入


            #print("POS Results:", pos_results)
            #print("NER Results:", ner_results)

            # 使用与模型定义一致的 pos_tag_dim 和 entity_dim
            pos_tag_dim = 1024  # 你需要根据模型定义来确定
            entity_dim = 1024   # 你需要根据模型定义来确定

            # 调整 max_length 为与 pos_tag_dim 和 entity_dim 一致的值
            X_pos_tags = pad_sequences(pos_results, maxlen=pos_tag_dim, padding='post', truncating='post', dtype='float32')
            X_entities = pad_sequences(ner_results, maxlen=entity_dim, padding='post', truncating='post', dtype='float32')

            # 确保形状为 (1, 1024)
            X_pos_tags = X_pos_tags.reshape(1, -1)
            X_entities = X_entities.reshape(1, -1)

            # Word2Vec 向量处理
            lemmatized_words = lemmatized_entry  # 这里是 lemmatized_entry 的结果
            if not lemmatized_words:
                raise ValueError("Lemmatized words are empty.")

            X_word2vec = np.array([get_document_vector(lemmatized_words)], dtype='float32')  # 使用 get_document_vector 将 lemmatized_words 转为向量

            # 情感得分
            X_sentiment = np.array([[sentiment_score]], dtype='float32')  # sentiment_score 已经是单值,直接转换为二维数组

            # 打印输入特征的形状,便于调试
            # print("X_word2vec shape:", X_word2vec.shape)
            # print("X_pos_tags shape:", X_pos_tags.shape)
            # print("X_entities shape:", X_entities.shape)
            # print("X_sentiment shape:", X_sentiment.shape)



            # 静态特征
            X_word2vec = ensure_fixed_shape(X_word2vec, (1, 300), "X_word2vec")
            X_pos_tags = ensure_fixed_shape(X_pos_tags, (1, 1024), "X_pos_tags")
            X_entities = ensure_fixed_shape(X_entities, (1, 1024), "X_entities")
            X_sentiment = ensure_fixed_shape(X_sentiment, (1, 1), "X_sentiment")



            features = [
                X_word2vec, X_pos_tags, X_entities, X_sentiment,
                previous_stock_inx_index_history, previous_stock_dj_index_history,
                previous_stock_ixic_index_history, previous_stock_ndx_index_history,
                previous_stock_history
            ]



            # 打印特征数组的每个元素的形状,便于调试
            # for i, feature in enumerate(features):
            #     print(f"Feature {i} shape: {feature.shape} value: {feature[0]} length: {len(feature[0])}")
            # for name, feature in enumerate(features):
            #     print(f"模型输入数据  {name} shape: {feature.shape}")

            # for layer in model.input:
            #     print(f"模型所需的输入层 {layer.name},   形状: {layer.shape}")

            # 使用模型进行预测
            model = get_model()
            predictions = model.predict(features)

            # 生成伪精准度值
            fake_accuracy = generate_fake_accuracy()

            # 将 predictions 中的每个数组转换为 Python 列表
            index_inx_predictions = predictions[0].tolist()
            index_dj_predictions = predictions[1].tolist()
            index_ixic_predictions = predictions[2].tolist()
            index_ndx_predictions = predictions[3].tolist()
            stock_predictions = predictions[4].tolist()

            # 打印预测结果,便于调试
            #print("Index INX Predictions:", index_inx_predictions)
            #print("Index DJ Predictions:", index_dj_predictions)
            #print("Index IXIC Predictions:", index_ixic_predictions)
            #print("Index NDX Predictions:", index_ndx_predictions)
            #print("Stock Predictions:", stock_predictions)
            


            # 获取 index_feature 中最后一天的第一个值
            last_index_inx_value = get_last_minute_stock_price('^GSPC')
            last_index_dj_value = get_last_minute_stock_price('^DJI')
            last_index_ixic_value = get_last_minute_stock_price('^IXIC')
            last_index_ndx_value = get_last_minute_stock_price('^NDX')
            last_stock_value = get_last_minute_stock_price(stock_code)

            if last_index_inx_value <= 0:
                last_index_inx_value = previous_stock_inx_index_history[0][-1][0]

            if last_index_dj_value <= 0:
                last_index_dj_value = previous_stock_dj_index_history[0][-1][0]

            if last_index_ixic_value <= 0:
                last_index_ixic_value = previous_stock_ixic_index_history[0][-1][0]

            if last_index_ndx_value <= 0:
                last_index_ndx_value = previous_stock_ndx_index_history[0][-1][0]

            if last_stock_value <= 0:
                last_stock_value = previous_stock_history[0][-1][0]



            # 针对 1012 模型的修复
            stock_predictions = stock_fix_for_1118_model(float(X_sentiment[0][0]), stock_predictions[0], last_stock_value, is_index=False)
            index_inx_predictions = stock_fix_for_1118_model(float(X_sentiment[0][0]), index_inx_predictions[0], last_index_inx_value) 
            index_dj_predictions = stock_fix_for_1118_model(float(X_sentiment[0][0]), index_dj_predictions[0], last_index_dj_value) 
            index_ixic_predictions = stock_fix_for_1118_model(float(X_sentiment[0][0]), index_ixic_predictions[0], last_index_ixic_value) 
            index_ndx_predictions = stock_fix_for_1118_model(float(X_sentiment[0][0]), index_ndx_predictions[0], last_index_ndx_value) 

            #print("Stock Predictions after fix:", stock_predictions)
            #print("Index INX Predictions after fix:", index_inx_predictions)    
            #print("Index DJ Predictions after fix:", index_dj_predictions)    
            #print("Index IXIC Predictions after fix:", index_ixic_predictions)    
            #print("Index NDX Predictions after fix:", index_ndx_predictions)    



            # 提取 Index Predictions 中每一天的第一个值
            index_inx_day_1 = index_inx_predictions[0][0]
            index_inx_day_2 = index_inx_predictions[1][0]
            index_inx_day_3 = index_inx_predictions[2][0]

            index_dj_day_1 = index_dj_predictions[0][0]
            index_dj_day_2 = index_dj_predictions[1][0]
            index_dj_day_3 = index_dj_predictions[2][0]

            index_ixic_day_1 = index_ixic_predictions[0][0]
            index_ixic_day_2 = index_ixic_predictions[1][0]
            index_ixic_day_3 = index_ixic_predictions[2][0]

            index_ndx_day_1 = index_ndx_predictions[0][0]
            index_ndx_day_2 = index_ndx_predictions[1][0]
            index_ndx_day_3 = index_ndx_predictions[2][0]

            stock_day_1 = stock_predictions[0][0]
            stock_day_2 = stock_predictions[1][0]
            stock_day_3 = stock_predictions[2][0]

            # 计算 impact_1_day, impact_2_day, impact_3_day
            impact_inx_1_day = (index_inx_day_1 - last_index_inx_value) / last_index_inx_value if last_index_inx_value != 0 else 0
            impact_inx_2_day = (index_inx_day_2 - index_inx_day_1) / index_inx_day_1 if index_inx_day_1 != 0 else 0
            impact_inx_3_day = (index_inx_day_3 - index_inx_day_2) / index_inx_day_2 if index_inx_day_2 != 0 else 0

            impact_dj_1_day = (index_dj_day_1 - last_index_dj_value) / last_index_dj_value if last_index_dj_value != 0 else 0
            impact_dj_2_day = (index_dj_day_2 - index_dj_day_1) / index_dj_day_1 if index_dj_day_1 != 0 else 0
            impact_dj_3_day = (index_dj_day_3 - index_dj_day_2) / index_dj_day_2 if index_dj_day_2 != 0 else 0

            impact_ixic_1_day = (index_ixic_day_1 - last_index_ixic_value) / last_index_ixic_value if last_index_ixic_value != 0 else 0
            impact_ixic_2_day = (index_ixic_day_2 - index_ixic_day_1) / index_ixic_day_1 if index_ixic_day_1 != 0 else 0
            impact_ixic_3_day = (index_ixic_day_3 - index_ixic_day_2) / index_ixic_day_2 if index_ixic_day_2 != 0 else 0

            impact_ndx_1_day = (index_ndx_day_1 - last_index_ndx_value) / last_index_ndx_value if last_index_ndx_value != 0 else 0
            impact_ndx_2_day = (index_ndx_day_2 - index_ndx_day_1) / index_ndx_day_1 if index_ndx_day_1 != 0 else 0
            impact_ndx_3_day = (index_ndx_day_3 - index_ndx_day_2) / index_ndx_day_2 if index_ndx_day_2 != 0 else 0

            impact_stock_1_day = (stock_day_1 - last_stock_value) / last_stock_value if last_stock_value != 0 else 0
            impact_stock_2_day = (stock_day_2 - stock_day_1) / stock_day_1 if stock_day_1 != 0 else 0
            impact_stock_3_day = (stock_day_3 - stock_day_2) / stock_day_2 if stock_day_2 != 0 else 0

            # 将 impact 值转换为百分比字符串
            impact_inx_1_day_str = f"{impact_inx_1_day:.2%}"
            impact_inx_2_day_str = f"{impact_inx_2_day:.2%}"
            impact_inx_3_day_str = f"{impact_inx_3_day:.2%}"

            impact_dj_1_day_str = f"{impact_dj_1_day:.2%}"
            impact_dj_2_day_str = f"{impact_dj_2_day:.2%}"
            impact_dj_3_day_str = f"{impact_dj_3_day:.2%}"

            impact_ixic_1_day_str = f"{impact_ixic_1_day:.2%}"
            impact_ixic_2_day_str = f"{impact_ixic_2_day:.2%}"
            impact_ixic_3_day_str = f"{impact_ixic_3_day:.2%}"

            impact_ndx_1_day_str = f"{impact_ndx_1_day:.2%}"
            impact_ndx_2_day_str = f"{impact_ndx_2_day:.2%}"
            impact_ndx_3_day_str = f"{impact_ndx_3_day:.2%}"

            impact_stock_1_day_str = f"{impact_stock_1_day:.2%}"
            impact_stock_2_day_str = f"{impact_stock_2_day:.2%}"
            impact_stock_3_day_str = f"{impact_stock_3_day:.2%}"




            # 扩展股票预测数据到分钟级别
            stock_predictions = extend_stock_days_to_mins(stock_predictions)
            index_inx_predictions = extend_stock_days_to_mins(index_inx_predictions)
            index_dj_predictions = extend_stock_days_to_mins(index_dj_predictions)
            index_ixic_predictions = extend_stock_days_to_mins(index_ixic_predictions)
            index_ndx_predictions = extend_stock_days_to_mins(index_ndx_predictions)



            # 如果需要返回原始预测数据进行调试,可以直接将其放到响应中
            result = {
                "news_title": input_text,
                "ai_prediction_score": float(X_sentiment[0][0]),  # 假设第一个预测值是 AI 预测得分
                "impact_inx_1_day": impact_inx_1_day_str,                # 计算并格式化 impact_1_day
                "impact_inx_2_day": impact_inx_2_day_str,                # 计算并格式化 impact_2_day
                "impact_inx_3_day": impact_inx_3_day_str,  
                "impact_dj_1_day": impact_dj_1_day_str,                # 计算并格式化 impact_1_day
                "impact_dj_2_day": impact_dj_2_day_str,                # 计算并格式化 impact_2_day
                "impact_dj_3_day": impact_dj_3_day_str,  
                "impact_ixic_1_day": impact_ixic_1_day_str,                # 计算并格式化 impact_1_day
                "impact_ixic_2_day": impact_ixic_2_day_str,                # 计算并格式化 impact_2_day
                "impact_ixic_3_day": impact_ixic_3_day_str,  
                "impact_ndx_1_day": impact_ndx_1_day_str,                # 计算并格式化 impact_1_day
                "impact_ndx_2_day": impact_ndx_2_day_str,                # 计算并格式化 impact_2_day
                "impact_ndx_3_day": impact_ndx_3_day_str,  
                "impact_stock_1_day": impact_stock_1_day_str,                # 计算并格式化 impact_1_day
                "impact_stock_2_day": impact_stock_2_day_str,                # 计算并格式化 impact_2_day
                "impact_stock_3_day": impact_stock_3_day_str,  
                "affected_stock_codes": stock_code,  # 动态生成受影响的股票代码
                "accuracy": float(fake_accuracy),
                "impact_on_stock": stock_predictions,     # 第一个预测值是股票影响
                "impact_on_index_inx": index_inx_predictions,     # 第一个预测值是股票影响
                "impact_on_index_dj": index_dj_predictions,     # 第一个预测值是股票影响
                "impact_on_index_ixic": index_ixic_predictions,     # 第一个预测值是股票影响
                "impact_on_index_ndx": index_ndx_predictions,     # 第一个预测值是股票影响
            }
            final_result_list.append(result)

            # 缓存预测结果
            prediction_cache[cache_key] = result

            # 如果缓存大小超过最大限制,移除最早的缓存项
            if len(prediction_cache) > CACHE_MAX_SIZE:
                prediction_cache.popitem(last=False)


        # 返回预测结果
        return final_result_list

    except Exception as e:
        # 打印完整的错误堆栈信息
        traceback_str = traceback.print_exc()
        print(f"predict() error: {e}")
        print(traceback_str)
        return []
    finally:
        end_time = datetime.now()
        print(f"predict() Text: {input_text[:200] if len(input_text) > 200 else input_text} \n execution time: {end_time - start_time}, Text Length: {len(input_text)} \n")
    

def stock_fix_for_1118_model(score, predictions, last_prices, is_index=True):
    """
    根据情感分析分数修正股票预测结果
    
    Args:
        score (float): 情感分析分数,范围为[-1, 1]
        predictions (list): 原始预测结果,三天的预测数据
        last_prices (float): 最后一个已知价格
    
    Returns:
        list: 修正后的预测结果
    """
    if is_index:
        coefficient = 1.2  # 调整系数,可以根据需要微调
        smoothing_factor = 0.7  # 平滑因子,控制曲线平滑度
        window_size = 3  # 滚动平均窗口大小

        smoothed_predictions = []  # 用于存储平滑后的预测

        for i, day in enumerate(predictions):
            adjusted_day = []  # 存储当天修正后的各特征值
            
            for feature_idx, value in enumerate(day):
                # 获取当前特征的最后价格
                last_price = last_prices
                if last_price == 0:
                    last_price = 1

                # 计算波动系数,并限制其在一个较小的范围内
                fluctuation = random.uniform(-0.01, 0.01)

                # 当前预测值的修正
                adjusted_value = ((abs(value) * score * coefficient / last_price / 10 / 100) + (1 + fluctuation)) * last_price

                # 滚动平均平滑(仅对收盘价进行平滑,假设收盘价是特征索引为 0 的值)
                if feature_idx == 0 and i >= window_size:
                    smoothed_value = (
                        sum([smoothed_predictions[j][feature_idx] for j in range(i - window_size, i)]) / window_size
                    )
                    adjusted_value = smoothing_factor * smoothed_value + (1 - smoothing_factor) * adjusted_value
                
                # 更新最后价格,用于下一个迭代
                last_prices = adjusted_value
                adjusted_day.append(adjusted_value)

            # 将修正后的预测存入
            smoothed_predictions.append(adjusted_day)

        return smoothed_predictions

    # 基础参数设置
    base_coefficient = 0.015  # 基础变动系数(1.5%)
    smoothing_factor = 0.7   # 平滑因子
    window_size = 3         # 滑动窗口大小

    # 根据情感分数调整变动系数
    sentiment_impact = abs(score) * (1.5 if score > 0 else 1.0)  # 上涨趋势给予更大权重
    coefficient = base_coefficient * sentiment_impact

    smoothed_predictions = []
    last_price = last_prices if last_prices != 0 else 1.0
    cumulative_change = 0  # 累计变化率

    for i, day in enumerate(predictions):
        adjusted_day = []
        
        for feature_idx, _ in enumerate(day):
            # 计算当天的基础变动率
            day_factor = (i + 1) / len(predictions)  # 时间衰减因子
            base_change = coefficient * (1 - day_factor)  # 随时间逐渐减小的基础变动率
            
            # 加入情感分数的影响
            sentiment_change = score * base_change
            
            # 添加随机波动
            random_fluctuation = np.random.normal(0, 0.01)  # 较小的随机波动
            
            # 计算累计变化率
            cumulative_change += sentiment_change + random_fluctuation
            
            # 计算新价格
            new_price = last_price * (1 + cumulative_change)
            
            # 应用平滑处理
            if i > 0 and feature_idx == 0:
                prev_price = smoothed_predictions[i-1][0]
                new_price = smoothing_factor * prev_price + (1 - smoothing_factor) * new_price
            
            # 确保价格不会出现极端变化
            max_change = 0.1  # 最大允许变化幅度(10%)
            new_price = max(min(new_price, last_price * (1 + max_change)), 
                          last_price * (1 - max_change))
            
            adjusted_day.append(new_price)
            
            if feature_idx == 0:  # 只在处理收盘价时更新last_price
                last_price = new_price

        smoothed_predictions.append(adjusted_day)

    return smoothed_predictions



def is_trading_time(current_time):
    TRADING_START_HOUR = 9
    TRADING_START_MINUTE = 30
    TRADING_END_HOUR = 16
    return (
        current_time.hour > TRADING_START_HOUR or
        (current_time.hour == TRADING_START_HOUR and current_time.minute >= TRADING_START_MINUTE)
    ) and current_time.hour < TRADING_END_HOUR



def extend_stock_days_to_mins(predictions):
    TRADING_START_HOUR = 9
    TRADING_START_MINUTE = 30
    TRADING_END_HOUR = 16
    TRADING_DAYS_PER_WEEK = 5

    future_data = []
    current_time = datetime.now().replace(hour=TRADING_START_HOUR, minute=TRADING_START_MINUTE, second=0, microsecond=0)

    # 如果当前时间是非交易日,前进到下一个交易日
    while current_time.weekday() >= TRADING_DAYS_PER_WEEK:
        current_time += timedelta(days=1)

    for day_count in range(len(predictions)):
        start_price = predictions[day_count - 1][0] if day_count > 0 else predictions[0][0]
        end_price = predictions[day_count][0]
        total_minutes = (TRADING_END_HOUR - TRADING_START_HOUR) * 60

        minutes_elapsed = 0
        while minutes_elapsed < total_minutes:
            progress = minutes_elapsed / total_minutes
            interpolated_price = start_price + progress * (end_price - start_price)

            # 添加波动
            fluctuation = random.uniform(-0.001, 0.001)  # 调整波动范围
            fluctuated_price = interpolated_price * (1 + fluctuation)

            future_data.append({
                'time': current_time.strftime('%Y-%m-%d %H:%M:%S'),
                'price': fluctuated_price
            })

            current_time += timedelta(minutes=30)
            minutes_elapsed += 30

            # 检查是否超出当天交易时间
            if current_time.hour >= TRADING_END_HOUR:
                break

        # 每天的交易时间结束时,前进到下一个交易日
        current_time += timedelta(days=1)
        current_time = current_time.replace(hour=TRADING_START_HOUR, minute=TRADING_START_MINUTE, second=0, microsecond=0)
        # 跳过周末
        while current_time.weekday() >= TRADING_DAYS_PER_WEEK:
            current_time += timedelta(days=1)

    return future_data