Spaces:
Running
Running
从 Hugging Face Hub 下载 Word2Vec 模型,移除本地路径搜索逻辑
Browse files- preprocess.py +27 -33
preprocess.py
CHANGED
@@ -71,7 +71,7 @@ class LazyWord2Vec:
|
|
71 |
@property
|
72 |
def model(self):
|
73 |
if self._model is None:
|
74 |
-
print("Loading Word2Vec model...")
|
75 |
self._model = KeyedVectors.load(self.model_path, mmap='r')
|
76 |
return self._model
|
77 |
|
@@ -88,43 +88,37 @@ class LazyWord2Vec:
|
|
88 |
return key in self.model
|
89 |
|
90 |
# 加载预训练的 Google News Word2Vec 模型
|
91 |
-
# 定义路径列表
|
92 |
-
search_paths = ["/BuckLake/Model/",
|
93 |
-
"/Users/parker/Development/Server/BuckLake/Model/",
|
94 |
-
"/Users/liuyue/Work/BuckLake/Model/"]
|
95 |
-
|
96 |
-
# 获取当前文件所在目录的路径
|
97 |
-
current_directory = os.getcwd()
|
98 |
-
print(f"Current directory: {current_directory}")
|
99 |
-
current_directory = os.path.dirname(os.path.abspath(__file__))
|
100 |
-
|
101 |
-
# 添加相对于当前项目的路径
|
102 |
-
# search_paths.insert(0, os.path.join(current_directory, 'model'))
|
103 |
-
search_paths.insert(1, os.path.join(current_directory, '..', 'Model'))
|
104 |
|
|
|
|
|
|
|
105 |
|
106 |
-
#
|
107 |
-
|
|
|
108 |
|
109 |
-
#
|
110 |
-
|
111 |
|
112 |
-
#
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
raise
|
127 |
|
|
|
|
|
|
|
128 |
|
129 |
|
130 |
def pos_tagging(text):
|
|
|
71 |
@property
|
72 |
def model(self):
|
73 |
if self._model is None:
|
74 |
+
print(f"Loading Word2Vec model from path: {self.model_path}...")
|
75 |
self._model = KeyedVectors.load(self.model_path, mmap='r')
|
76 |
return self._model
|
77 |
|
|
|
88 |
return key in self.model
|
89 |
|
90 |
# 加载预训练的 Google News Word2Vec 模型
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
+
# 定义模型名称
|
93 |
+
from huggingface_hub import hf_hub_download
|
94 |
+
import os
|
95 |
|
96 |
+
# 定义 Hugging Face 的 repository 信息
|
97 |
+
repo_id = "fse/word2vec-google-news-300" # 替换为实际的仓库ID
|
98 |
+
filename = "word2vec-google-news-300.model" # 文件名
|
99 |
|
100 |
+
# 确保本地保存目录存在
|
101 |
+
#os.makedirs(local_model_path, exist_ok=True)
|
102 |
|
103 |
+
# 尝试从 Hugging Face 下载模型文件
|
104 |
+
try:
|
105 |
+
print(f"Downloading {filename} from Hugging Face Hub...")
|
106 |
+
downloaded_path = hf_hub_download(
|
107 |
+
repo_id=repo_id,
|
108 |
+
filename=filename
|
109 |
+
)
|
110 |
+
|
111 |
+
downloaded_path_npy = hf_hub_download(
|
112 |
+
repo_id=repo_id,
|
113 |
+
filename="word2vec-google-news-300.model.vectors.npy"
|
114 |
+
)
|
115 |
+
print(f"Model downloaded to {downloaded_path}")
|
116 |
+
except Exception as e:
|
117 |
+
raise RuntimeError(f"Failed to download {filename} from Hugging Face Hub: {e}")
|
118 |
|
119 |
+
# 加载模型
|
120 |
+
print(f"Loading Word2Vec model from {downloaded_path}...")
|
121 |
+
word2vec_model = LazyWord2Vec(downloaded_path)
|
122 |
|
123 |
|
124 |
def pos_tagging(text):
|