Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
torch.manual_seed(0) | |
torch.backends.cudnn.benchmark = False | |
torch.backends.cudnn.deterministic = True | |
import random | |
random.seed(0) | |
import numpy as np | |
np.random.seed(0) | |
import librosa | |
from copy import deepcopy | |
from huggingface_hub import hf_hub_download | |
import spaces | |
import yaml | |
import re | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
import torchaudio | |
from ipa_uk import ipa | |
from unicodedata import normalize | |
from ukrainian_word_stress import Stressifier, StressSymbol | |
stressify = Stressifier() | |
from models import * | |
from utils import * | |
from text_utils import TextCleaner | |
textclenaer = TextCleaner() | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
to_mel = torchaudio.transforms.MelSpectrogram( | |
n_mels=80, n_fft=2048, win_length=1200, hop_length=300) | |
mean, std = -4, 4 | |
def length_to_mask(lengths): | |
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths) | |
mask = torch.gt(mask+1, lengths.unsqueeze(1)) | |
return mask | |
def load_state_dict(model, params): | |
for key in model: | |
if key in params: | |
print('%s loaded' % key) | |
try: | |
model[key].load_state_dict(params[key]) | |
except: | |
from collections import OrderedDict | |
state_dict = params[key] | |
new_state_dict = OrderedDict() | |
for k, v in state_dict.items(): | |
name = k[7:] # remove `module.` | |
new_state_dict[name] = v | |
model[key].load_state_dict(new_state_dict, strict=False) | |
config = yaml.safe_load(open('config.yml')) | |
# load pretrained ASR model | |
ASR_config = config.get('ASR_config', False) | |
ASR_path = config.get('ASR_path', False) | |
text_aligner = load_ASR_models(ASR_path, ASR_config) | |
# load pretrained F0 model | |
F0_path = config.get('F0_path', False) | |
pitch_extractor = load_F0_models(F0_path) | |
# load BERT model | |
from Utils.PLBERT.util import load_plbert | |
plbert = load_plbert('weights/plbert.bin', 'Utils/PLBERT/config.yml') | |
model_single = build_model(recursive_munch(config['model_params_single']), text_aligner, pitch_extractor, plbert) | |
model_multi = build_model(recursive_munch(config['model_params_multi']), deepcopy(text_aligner), deepcopy(pitch_extractor), deepcopy(plbert)) | |
multi_path = hf_hub_download(repo_id='patriotyk/styletts2_ukrainian_multispeaker', filename="pytorch_model.bin") | |
params_multi = torch.load(multi_path, map_location='cpu') | |
single_path = hf_hub_download(repo_id='patriotyk/styletts2_ukrainian_single', filename="pytorch_model.bin") | |
params_single = torch.load(single_path, map_location='cpu') | |
load_state_dict(model_single, params_single) | |
_ = [model_single[key].eval() for key in model_single] | |
_ = [model_single[key].to(device) for key in model_single] | |
load_state_dict(model_multi, params_multi) | |
_ = [model_multi[key].eval() for key in model_multi] | |
_ = [model_multi[key].to(device) for key in model_multi] | |
models = { | |
'multi': model_multi, | |
'single': model_single | |
} | |
def preprocess(wave): | |
wave_tensor = torch.from_numpy(wave).float() | |
mel_tensor = to_mel(wave_tensor) | |
mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std | |
return mel_tensor | |
def compute_style(voice_audio): | |
wave, sr = librosa.load(voice_audio, sr=24000) | |
audio, index = librosa.effects.trim(wave, top_db=30) | |
if sr != 24000: | |
audio = librosa.resample(audio, sr, 24000) | |
mel_tensor = preprocess(audio).to(device) | |
with torch.no_grad(): | |
ref_s = models['multi'].style_encoder(mel_tensor.unsqueeze(1)) | |
ref_p = models['multi'].predictor_encoder(mel_tensor.unsqueeze(1)) | |
return torch.cat([ref_s, ref_p], dim=1) | |
def split_to_parts(text): | |
split_symbols = '.?!:' | |
parts = [''] | |
index = 0 | |
for s in text: | |
parts[index] += s | |
if s in split_symbols and len(parts[index]) > 150: | |
index += 1 | |
parts.append('') | |
return parts | |
def _inf(model, text, ref_s, speed, s_prev, noise, alpha, beta, diffusion_steps, embedding_scale): | |
model = models[model] | |
text = text.strip() | |
text = text.replace('"', '') | |
text = text.replace('+', 'Λ') | |
text = normalize('NFKC', text) | |
text = re.sub(r'[α βββββββ»βββΈΊβΈ»]', '-', text) | |
text = re.sub(r' - ', ': ', text) | |
ps = ipa(stressify(text)) | |
print(ps) | |
tokens = textclenaer(ps) | |
tokens.insert(0, 0) | |
tokens = torch.LongTensor(tokens).to(device).unsqueeze(0) | |
with torch.no_grad(): | |
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(tokens.device) | |
text_mask = length_to_mask(input_lengths).to(tokens.device) | |
t_en = model.text_encoder(tokens, input_lengths, text_mask) | |
bert_dur = model.bert(tokens, attention_mask=(~text_mask).int()) | |
d_en = model.bert_encoder(bert_dur).transpose(-1, -2) | |
if ref_s is None: | |
s_pred = model.sampler(noise, | |
embedding=bert_dur[0].unsqueeze(0), num_steps=diffusion_steps, | |
embedding_scale=embedding_scale).squeeze(0) | |
else: | |
s_pred = model.sampler(noise = noise, | |
embedding=bert_dur, | |
embedding_scale=embedding_scale, | |
features=ref_s, # reference from the same speaker as the embedding | |
num_steps=diffusion_steps).squeeze(1) | |
if s_prev is not None: | |
# convex combination of previous and current style | |
s_pred = alpha * s_prev + (1 - alpha) * s_pred | |
s = s_pred[:, 128:] | |
ref = s_pred[:, :128] | |
if ref_s is not None: | |
ref = alpha * ref + (1 - alpha) * ref_s[:, :128] | |
s = beta * s + (1 - beta) * ref_s[:, 128:] | |
d = model.predictor.text_encoder(d_en, s, input_lengths, text_mask) | |
x, _ = model.predictor.lstm(d) | |
duration = model.predictor.duration_proj(x) | |
duration = torch.sigmoid(duration).sum(axis=-1)/speed | |
pred_dur = torch.round(duration.squeeze()).clamp(min=1) | |
if ref_s is not None: | |
pred_dur[0] = 30 | |
pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data)) | |
c_frame = 0 | |
for i in range(pred_aln_trg.size(0)): | |
pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1 | |
c_frame += int(pred_dur[i].data) | |
# encode prosody | |
en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device)) | |
F0_pred, N_pred = model.predictor.F0Ntrain(en, s) | |
asr = (t_en @ pred_aln_trg.unsqueeze(0).to(device)) | |
out = model.decoder(asr, F0_pred, N_pred, ref.squeeze().unsqueeze(0)) | |
if ref_s is not None: | |
out = out[:,:, 14500:] | |
return out.squeeze().cpu().numpy(), s_pred, ps | |
def inference(model, text, voice_audio, progress, speed=1, alpha=0.4, beta=0.4, diffusion_steps=10, embedding_scale=1.2): | |
wavs = [] | |
s_prev = None | |
#sentences = text.split('|') | |
sentences = split_to_parts(text) | |
phonemes = '' | |
noise = torch.randn(1,1,256).to(device) | |
ref_s = compute_style(voice_audio) if voice_audio else None | |
for text in progress.tqdm(sentences): | |
if text.strip() == "": continue | |
wav, s_prev, ps = _inf(model, text, ref_s, speed, s_prev, noise, alpha=alpha, beta=beta, diffusion_steps=diffusion_steps, embedding_scale=embedding_scale) | |
wavs.append(wav) | |
phonemes += ' ' + ps | |
return np.concatenate(wavs), phonemes | |