Serhiy Stetskovych
Move single model
8fc33c0
import torch
torch.manual_seed(0)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
import random
random.seed(0)
import numpy as np
np.random.seed(0)
import librosa
from copy import deepcopy
from huggingface_hub import hf_hub_download
import spaces
import yaml
import re
import numpy as np
import torch
import torch.nn.functional as F
import torchaudio
from ipa_uk import ipa
from unicodedata import normalize
from ukrainian_word_stress import Stressifier, StressSymbol
stressify = Stressifier()
from models import *
from utils import *
from text_utils import TextCleaner
textclenaer = TextCleaner()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
to_mel = torchaudio.transforms.MelSpectrogram(
n_mels=80, n_fft=2048, win_length=1200, hop_length=300)
mean, std = -4, 4
def length_to_mask(lengths):
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
mask = torch.gt(mask+1, lengths.unsqueeze(1))
return mask
def load_state_dict(model, params):
for key in model:
if key in params:
print('%s loaded' % key)
try:
model[key].load_state_dict(params[key])
except:
from collections import OrderedDict
state_dict = params[key]
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
model[key].load_state_dict(new_state_dict, strict=False)
config = yaml.safe_load(open('config.yml'))
# load pretrained ASR model
ASR_config = config.get('ASR_config', False)
ASR_path = config.get('ASR_path', False)
text_aligner = load_ASR_models(ASR_path, ASR_config)
# load pretrained F0 model
F0_path = config.get('F0_path', False)
pitch_extractor = load_F0_models(F0_path)
# load BERT model
from Utils.PLBERT.util import load_plbert
plbert = load_plbert('weights/plbert.bin', 'Utils/PLBERT/config.yml')
model_single = build_model(recursive_munch(config['model_params_single']), text_aligner, pitch_extractor, plbert)
model_multi = build_model(recursive_munch(config['model_params_multi']), deepcopy(text_aligner), deepcopy(pitch_extractor), deepcopy(plbert))
multi_path = hf_hub_download(repo_id='patriotyk/styletts2_ukrainian_multispeaker', filename="pytorch_model.bin")
params_multi = torch.load(multi_path, map_location='cpu')
single_path = hf_hub_download(repo_id='patriotyk/styletts2_ukrainian_single', filename="pytorch_model.bin")
params_single = torch.load(single_path, map_location='cpu')
load_state_dict(model_single, params_single)
_ = [model_single[key].eval() for key in model_single]
_ = [model_single[key].to(device) for key in model_single]
load_state_dict(model_multi, params_multi)
_ = [model_multi[key].eval() for key in model_multi]
_ = [model_multi[key].to(device) for key in model_multi]
models = {
'multi': model_multi,
'single': model_single
}
def preprocess(wave):
wave_tensor = torch.from_numpy(wave).float()
mel_tensor = to_mel(wave_tensor)
mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std
return mel_tensor
def compute_style(voice_audio):
wave, sr = librosa.load(voice_audio, sr=24000)
audio, index = librosa.effects.trim(wave, top_db=30)
if sr != 24000:
audio = librosa.resample(audio, sr, 24000)
mel_tensor = preprocess(audio).to(device)
with torch.no_grad():
ref_s = models['multi'].style_encoder(mel_tensor.unsqueeze(1))
ref_p = models['multi'].predictor_encoder(mel_tensor.unsqueeze(1))
return torch.cat([ref_s, ref_p], dim=1)
def split_to_parts(text):
split_symbols = '.?!:'
parts = ['']
index = 0
for s in text:
parts[index] += s
if s in split_symbols and len(parts[index]) > 150:
index += 1
parts.append('')
return parts
def _inf(model, text, ref_s, speed, s_prev, noise, alpha, beta, diffusion_steps, embedding_scale):
model = models[model]
text = text.strip()
text = text.replace('"', '')
text = text.replace('+', 'ˈ')
text = normalize('NFKC', text)
text = re.sub(r'[α †β€β€‘β€’β€“β€”β€•β»β‚‹βˆ’βΈΊβΈ»]', '-', text)
text = re.sub(r' - ', ': ', text)
ps = ipa(stressify(text))
print(ps)
tokens = textclenaer(ps)
tokens.insert(0, 0)
tokens = torch.LongTensor(tokens).to(device).unsqueeze(0)
with torch.no_grad():
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(tokens.device)
text_mask = length_to_mask(input_lengths).to(tokens.device)
t_en = model.text_encoder(tokens, input_lengths, text_mask)
bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())
d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
if ref_s is None:
s_pred = model.sampler(noise,
embedding=bert_dur[0].unsqueeze(0), num_steps=diffusion_steps,
embedding_scale=embedding_scale).squeeze(0)
else:
s_pred = model.sampler(noise = noise,
embedding=bert_dur,
embedding_scale=embedding_scale,
features=ref_s, # reference from the same speaker as the embedding
num_steps=diffusion_steps).squeeze(1)
if s_prev is not None:
# convex combination of previous and current style
s_pred = alpha * s_prev + (1 - alpha) * s_pred
s = s_pred[:, 128:]
ref = s_pred[:, :128]
if ref_s is not None:
ref = alpha * ref + (1 - alpha) * ref_s[:, :128]
s = beta * s + (1 - beta) * ref_s[:, 128:]
d = model.predictor.text_encoder(d_en, s, input_lengths, text_mask)
x, _ = model.predictor.lstm(d)
duration = model.predictor.duration_proj(x)
duration = torch.sigmoid(duration).sum(axis=-1)/speed
pred_dur = torch.round(duration.squeeze()).clamp(min=1)
if ref_s is not None:
pred_dur[0] = 30
pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data))
c_frame = 0
for i in range(pred_aln_trg.size(0)):
pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1
c_frame += int(pred_dur[i].data)
# encode prosody
en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device))
F0_pred, N_pred = model.predictor.F0Ntrain(en, s)
asr = (t_en @ pred_aln_trg.unsqueeze(0).to(device))
out = model.decoder(asr, F0_pred, N_pred, ref.squeeze().unsqueeze(0))
if ref_s is not None:
out = out[:,:, 14500:]
return out.squeeze().cpu().numpy(), s_pred, ps
@spaces.GPU
def inference(model, text, voice_audio, progress, speed=1, alpha=0.4, beta=0.4, diffusion_steps=10, embedding_scale=1.2):
wavs = []
s_prev = None
#sentences = text.split('|')
sentences = split_to_parts(text)
phonemes = ''
noise = torch.randn(1,1,256).to(device)
ref_s = compute_style(voice_audio) if voice_audio else None
for text in progress.tqdm(sentences):
if text.strip() == "": continue
wav, s_prev, ps = _inf(model, text, ref_s, speed, s_prev, noise, alpha=alpha, beta=beta, diffusion_steps=diffusion_steps, embedding_scale=embedding_scale)
wavs.append(wav)
phonemes += ' ' + ps
return np.concatenate(wavs), phonemes