from torch.optim import AdamW from torch.nn.parallel import DistributedDataParallel as DDP from .IFNet import * from .IFNet_m import * from .loss import * from .laplacian import * from .refine import * device = torch.device("cuda" if torch.cuda.is_available() else "cpu") class Model: def __init__(self, local_rank=-1, arbitrary=False): if arbitrary == True: self.flownet = IFNet_m() else: self.flownet = IFNet() self.device() self.optimG = AdamW( self.flownet.parameters(), lr=1e-6, weight_decay=1e-3 ) # use large weight decay may avoid NaN loss self.epe = EPE() self.lap = LapLoss() self.sobel = SOBEL() if local_rank != -1: self.flownet = DDP(self.flownet, device_ids=[local_rank], output_device=local_rank) def train(self): self.flownet.train() def eval(self): self.flownet.eval() def device(self): self.flownet.to(device) def load_model(self, path, rank=0): def convert(param): return {k.replace("module.", ""): v for k, v in param.items() if "module." in k} if rank <= 0: self.flownet.load_state_dict(convert(torch.load("{}/flownet.pkl".format(path)))) def save_model(self, path, rank=0): if rank == 0: torch.save(self.flownet.state_dict(), "{}/flownet.pkl".format(path)) def inference(self, img0, img1, scale=1, scale_list=[4, 2, 1], TTA=False, timestep=0.5): for i in range(3): scale_list[i] = scale_list[i] * 1.0 / scale imgs = torch.cat((img0, img1), 1) flow, mask, merged, flow_teacher, merged_teacher, loss_distill = self.flownet( imgs, scale_list, timestep=timestep ) if TTA == False: return merged[2] else: flow2, mask2, merged2, flow_teacher2, merged_teacher2, loss_distill2 = self.flownet( imgs.flip(2).flip(3), scale_list, timestep=timestep ) return (merged[2] + merged2[2].flip(2).flip(3)) / 2 def update(self, imgs, gt, learning_rate=0, mul=1, training=True, flow_gt=None): for param_group in self.optimG.param_groups: param_group["lr"] = learning_rate img0 = imgs[:, :3] img1 = imgs[:, 3:] if training: self.train() else: self.eval() flow, mask, merged, flow_teacher, merged_teacher, loss_distill = self.flownet( torch.cat((imgs, gt), 1), scale=[4, 2, 1] ) loss_l1 = (self.lap(merged[2], gt)).mean() loss_tea = (self.lap(merged_teacher, gt)).mean() if training: self.optimG.zero_grad() loss_G = ( loss_l1 + loss_tea + loss_distill * 0.01 ) # when training RIFEm, the weight of loss_distill should be 0.005 or 0.002 loss_G.backward() self.optimG.step() else: flow_teacher = flow[2] return merged[2], { "merged_tea": merged_teacher, "mask": mask, "mask_tea": mask, "flow": flow[2][:, :2], "flow_tea": flow_teacher, "loss_l1": loss_l1, "loss_tea": loss_tea, "loss_distill": loss_distill, }