# Import dependencies import os import gradio as gr from llama_index import GPTVectorStoreIndex # from response import get_response openai_api_key = os.getenv('OPENAI_API_KEY') """class ChatWrapper: def __call__( self, inp: str, history: str, chain ): Execute the chat functionality. output = chain({"question": inp, "chat_history": history})["answer"] history.append((inp, output)) return history, history chat = ChatWrapper()""" chatbot = gr.Chatbot() def get_response(message): response = (f"You entered: {inp}") return response block = gr.Blocks(css=".gradio-container {background-color: lightblue}") with block: gr.HTML("

Omdena AI Chatbot For Mental Health and Well Being

") gr.HTML("WELCOME
" "I am an AI ChatBot and I am here to assist you with whatever is bothering you. " "Our conversation is strictly confidential and I will not remember it when you come back another time." ) with gr.Row(): message = gr.Textbox( label="What would you like to talk about?", type = "text", ) with gr.Row(): submit = gr.Button(value="Send", variant="secondary").style(full_width=False) submit.click(get_response, inputs=[message], outputs=[chatbot]) gr.Examples( examples=[ "I feel lonely", "I'm having problems at home", "I am looking for some resources", ], inputs=message, ) block.launch(debug=True)