Spaces:
Sleeping
Sleeping
File size: 2,023 Bytes
46004f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
import os
import gradio as gr
from PIL import Image
import torch
from transformers import ViTForImageClassification, ViTImageProcessor
from datasets import load_dataset
# Model and processor configuration
model_name_or_path = "google/vit-base-patch16-224-in21k"
processor = ViTImageProcessor.from_pretrained(model_name_or_path)
# Load dataset (adjust dataset_path accordingly)
dataset_path = "pawlo2013/chest_xray"
train_dataset = load_dataset(dataset_path, split="train")
class_names = train_dataset.features["label"].names
# Load ViT model
model = ViTForImageClassification.from_pretrained(
"./models",
num_labels=len(class_names),
id2label={str(i): label for i, label in enumerate(class_names)},
label2id={label: i for i, label in enumerate(class_names)},
)
# Set model to evaluation mode
model.eval()
# Define the classification function
def classify_image(img_path):
img = Image.open(img_path)
processed_input = processor(images=img, return_tensors="pt")
with torch.no_grad():
outputs = model(**processed_input)
logits = outputs.logits
probabilities = torch.softmax(logits, dim=1)[0].tolist()
result = {class_name: prob for class_name, prob in zip(class_names, probabilities)}
return result
# Function to load examples from a folder
def load_examples_from_folder(folder_path):
examples = []
for file in os.listdir(folder_path):
if file.endswith((".png", ".jpg", ".jpeg")):
examples.append(os.path.join(folder_path, file))
return examples
# Define the path to the examples folder
examples_folder = "./examples"
examples = load_examples_from_folder(examples_folder)
# Create the Gradio interface
iface = gr.Interface(
fn=classify_image,
inputs=gr.Image(type="filepath"),
outputs=gr.Label(),
examples=examples,
title="Pneumonia X-Ray Classification",
description="Upload an X-ray image to classify it as normal or pneumonia.",
)
# Launch the app
if __name__ == "__main__":
iface.launch()
|