Pneumonia_3_Class / .history /app_20240617175900.py
pawlo2013's picture
redone the classification app
46004f7
import os
import gradio as gr
from PIL import Image
import torch
from transformers import ViTForImageClassification, ViTImageProcessor
from datasets import load_dataset
# Model and processor configuration
model_name_or_path = "google/vit-base-patch16-224-in21k"
processor = ViTImageProcessor.from_pretrained(model_name_or_path)
# Load dataset (adjust dataset_path accordingly)
dataset_path = "pawlo2013/chest_xray"
train_dataset = load_dataset(dataset_path, split="train")
class_names = train_dataset.features["label"].names
# Load ViT model
model = ViTForImageClassification.from_pretrained(
"./models",
num_labels=len(class_names),
id2label={str(i): label for i, label in enumerate(class_names)},
label2id={label: i for i, label in enumerate(class_names)},
)
# Set model to evaluation mode
model.eval()
# Define the classification function
def classify_image(img_path):
img = Image.open(img_path)
processed_input = processor(images=img, return_tensors="pt")
with torch.no_grad():
outputs = model(**processed_input)
logits = outputs.logits
probabilities = torch.softmax(logits, dim=1)[0].tolist()
result = {class_name: prob for class_name, prob in zip(class_names, probabilities)}
filename = os.path.basename(img_path).split(".")[0]
return {"filename": filename, "probabilities": result}
def format_output(output):
return f"{output['filename']}", output["probabilities"]
# Function to load examples from a folder
def load_examples_from_folder(folder_path):
examples = []
for file in os.listdir(folder_path):
if file.endswith((".png", ".jpg", ".jpeg")):
examples.append(os.path.join(folder_path, file))
return examples
# Define the path to the examples folder
examples_folder = "./examples"
examples = load_examples_from_folder(examples_folder)
# Create the Gradio interface
iface = gr.Interface(
fn=lambda img: format_output(classify_image(img)),
inputs=gr.Image(type="filepath"),
outputs=[gr.Textbox(label="Filename"), gr.Label()],
examples=examples,
title="Pneumonia X-Ray Classification",
description="Upload an X-ray image to classify it as normal or pneumonia.",
)
# Launch the app
if __name__ == "__main__":
iface.launch()