# import whisper from faster_whisper import WhisperModel import datetime import subprocess import gradio as gr from pathlib import Path import pandas as pd import re import time import os import numpy as np from sklearn.cluster import AgglomerativeClustering from sklearn.metrics import silhouette_score from pytube import YouTube import yt_dlp import torch import pyannote.audio from pyannote.audio.pipelines.speaker_verification import PretrainedSpeakerEmbedding from pyannote.audio import Audio from pyannote.core import Segment from gpuinfo import GPUInfo import wave import contextlib from transformers import pipeline import psutil whisper_models = ["tiny", "base", "small", "medium", "large-v1", "large-v2"] source_languages = { "en": "Inglês", "zh": "Chinês", "de": "Alemão", "es": "Espanhol", "ru": "Russo", "ko": "Coreano", "fr": "Francês", "ja": "Japonês", "pt": "Português", "tr": "Turco", "pl": "Polaco", "ca": "Catalão", "nl": "Holandês", "ar": "Árabe", "sv": "Sueco", "it": "Italiano", "id": "Indonésio", "hi": "Hindi", "fi": "Finlandês", "vi": "Vietnamita", "he": "Hebraico", "uk": "Ucraniano", "el": "Grego", "ms": "Malaio", "cs": "Checo", "ro": "Romeno", "da": "Dinamarquês", "hu": "Húngaro", "ta": "Tâmil", "no": "Norueguês", "th": "Tailandês", "ur": "Urdu", "hr": "Croata", "bg": "Búlgaro", "lt": "Lituano", "la": "Latim", "mi": "Maori", "ml": "Malaiala", "cy": "Galês", "sk": "Eslovaco", "te": "Telugu", "fa": "Persa", "lv": "Letão", "bn": "Bengali", "sr": "Sérvio", "az": "Azerbaijano", "sl": "Esloveno", "kn": "Canarim", "et": "Estoniano", "mk": "Macedónio", "br": "Bretão", "eu": "Basco", "is": "Islandês", "hy": "Arménio", "ne": "Nepalês", "mn": "Mongol", "bs": "Bósnio", "kk": "Cazaque", "sq": "Albanês", "sw": "Suaíli", "gl": "Galego", "mr": "Marata", "pa": "Punjabi", "si": "Cingalês", "km": "Khmer", "sn": "Shona", "yo": "Ioruba", "so": "Somali", "af": "Africâner", "oc": "Occitano", "ka": "Georgiano", "be": "Bielorrusso", "tg": "Tajique", "sd": "Sindi", "gu": "Guzerate", "am": "Amárico", "yi": "Iídiche", "lo": "Laosiano", "uz": "Usbeque", "fo": "Feroês", "ht": "Crioulo Haitiano", "ps": "Pashto", "tk": "Turcomano", "nn":"Nynorsk", "mt": "Maltês", "sa": "Sânscrito", "lb": "Luxemburguês", "my": "Birmanês", "bo": "Tibetano", "tl": "Tagalog", "mg": "Malgaxe", "as": "Assamês", "tt": "Tártaro", "haw": "Havaiano", "ln": "Lingala", "ha": "Hausa", "ba": "Bashkir", "jw": "Javanês", "su": "Sundanês", } source_language_list = [key[0] for key in source_languages.items()] MODEL_NAME = "vumichien/whisper-medium-jp" lang = "pt" device = 0 if torch.cuda.is_available() else "cpu" pipe = pipeline( task="automatic-speech-recognition", model=MODEL_NAME, chunk_length_s=30, device=device, ) os.makedirs('output', exist_ok=True) pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe") embedding_model = PretrainedSpeakerEmbedding( "speechbrain/spkrec-ecapa-voxceleb", device=torch.device("cuda" if torch.cuda.is_available() else "cpu")) def transcribe(microphone, file_upload): warn_output = "" if (microphone is not None) and (file_upload is not None): warn_output = ( "AVISO: Você enviou um arquivo de áudio e usou o microfone. " "O arquivo gravado pelo microfone será usado e o áudio enviado será descartado.\n" ) elif (microphone is None) and (file_upload is None): return "ERRO: Você precisa usar o microfone ou fazer upload de um arquivo de áudio" file = microphone if microphone is not None else file_upload text = pipe(file)["text"] return warn_output + text def _return_yt_html_embed(yt_url): video_id = yt_url.split("?v=")[-1] HTML_str = ( f'
' "
" ) return HTML_str def yt_transcribe(yt_url): # yt = YouTube(yt_url) # html_embed_str = _return_yt_html_embed(yt_url) # stream = yt.streams.filter(only_audio=True)[0] # stream.download(filename="audio.mp3") ydl_opts = { 'format': 'bestvideo*+bestaudio/best', 'postprocessors': [{ 'key': 'FFmpegExtractAudio', 'preferredcodec': 'mp3', 'preferredquality': '192', }], 'outtmpl':'audio.%(ext)s', } with yt_dlp.YoutubeDL(ydl_opts) as ydl: ydl.download([yt_url]) text = pipe("audio.mp3")["text"] return html_embed_str, text def convert_time(secs): return datetime.timedelta(seconds=round(secs)) def get_youtube(video_url): # yt = YouTube(video_url) # abs_video_path = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first().download() ydl_opts = { 'format': 'bestvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best', } with yt_dlp.YoutubeDL(ydl_opts) as ydl: info = ydl.extract_info(video_url, download=False) abs_video_path = ydl.prepare_filename(info) ydl.process_info(info) print("Sucesso ao baixar o vídeo") print(abs_video_path) return abs_video_path def speech_to_text(video_file_path, selected_source_lang, whisper_model, num_speakers): """ # Transcreva o link do youtube usando OpenAI Whisper NOTA: Este modelo foi adaptado por Pedro Faria, para exemplo para a Biometrid, não deve ser usado para outros fins. 1. Usando o modelo Whisper da Open AI para separar áudio em segmentos e gerar transcrições. 2. Gerando embeddings de alto-falante para cada segmento. 3. Aplicando clustering aglomerativo nos embeddings para identificar o falante de cada segmento. O reconhecimento de fala é baseado em modelos do OpenAI Whisper https://github.com/openai/whisper Speaker diarization model and pipeline from by https://github.com/pyannote/pyannote-audio Modelo de diarização de alto-falante e pipeline desenvolvido por https://github.com/pyannote/pyannote-audio """ # model = whisper.load_model(whisper_model) # model = WhisperModel(whisper_model, device="cuda", compute_type="int8_float16") model = WhisperModel(whisper_model, compute_type="int8") time_start = time.time() if(video_file_path == None): raise ValueError("Error no video input") print(video_file_path) try: # Read and convert youtube video _,file_ending = os.path.splitext(f'{video_file_path}') print(f'file enging is {file_ending}') audio_file = video_file_path.replace(file_ending, ".wav") print("A iniciar a conversão para WAV") os.system(f'ffmpeg -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{audio_file}"') # Get duration with contextlib.closing(wave.open(audio_file,'r')) as f: frames = f.getnframes() rate = f.getframerate() duration = frames / float(rate) print(f"Conversão para WAV concluída, duração do arquivo de áudio.: {duration}") # Transcribe audio options = dict(language=selected_source_lang, beam_size=5, best_of=5) transcribe_options = dict(task="transcribe", **options) segments_raw, info = model.transcribe(audio_file, **transcribe_options) # Convert back to original openai format segments = [] i = 0 for segment_chunk in segments_raw: chunk = {} chunk["start"] = segment_chunk.start chunk["end"] = segment_chunk.end chunk["text"] = segment_chunk.text segments.append(chunk) i += 1 print("transcrição de audio com fast whisper terminada") except Exception as e: raise RuntimeError("Erro a converter o filme para audio") try: # Create embedding def segment_embedding(segment): audio = Audio() start = segment["start"] # Whisper overshoots the end timestamp in the last segment end = min(duration, segment["end"]) clip = Segment(start, end) waveform, sample_rate = audio.crop(audio_file, clip) return embedding_model(waveform[None]) embeddings = np.zeros(shape=(len(segments), 192)) for i, segment in enumerate(segments): embeddings[i] = segment_embedding(segment) embeddings = np.nan_to_num(embeddings) print(f'Embedding shape: {embeddings.shape}') if num_speakers == 0: # Find the best number of speakers score_num_speakers = {} for num_speakers in range(2, 10+1): clustering = AgglomerativeClustering(num_speakers).fit(embeddings) score = silhouette_score(embeddings, clustering.labels_, metric='euclidean') score_num_speakers[num_speakers] = score best_num_speaker = max(score_num_speakers, key=lambda x:score_num_speakers[x]) print(f"O número estimado de participantes: {best_num_speaker} com pontuação de {score_num_speakers[best_num_speaker]} ") else: best_num_speaker = num_speakers # Assign speaker label clustering = AgglomerativeClustering(best_num_speaker).fit(embeddings) labels = clustering.labels_ for i in range(len(segments)): segments[i]["speaker"] = 'Participante ' + str(labels[i] + 1) # Make output objects = { 'Start' : [], 'End': [], 'Speaker': [], 'Text': [] } text = '' for (i, segment) in enumerate(segments): if i == 0 or segments[i - 1]["speaker"] != segment["speaker"]: objects['Start'].append(str(convert_time(segment["start"]))) objects['Speaker'].append(segment["speaker"]) if i != 0: objects['End'].append(str(convert_time(segments[i - 1]["end"]))) objects['Text'].append(text) text = '' text += segment["text"] + ' ' objects['End'].append(str(convert_time(segments[i - 1]["end"]))) objects['Text'].append(text) time_end = time.time() time_diff = time_end - time_start memory = psutil.virtual_memory() gpu_utilization, gpu_memory = GPUInfo.gpu_usage() gpu_utilization = gpu_utilization[0] if len(gpu_utilization) > 0 else 0 gpu_memory = gpu_memory[0] if len(gpu_memory) > 0 else 0 system_info = f""" *Memoria: {memory.total / (1024 * 1024 * 1024):.2f}GB, utilizado: {memory.percent}%, disponivel: {memory.available / (1024 * 1024 * 1024):.2f}GB.* *Tempo de processamento: {time_diff:.5} segundos.* *Utilização de GPU: {gpu_utilization}%, Memoria de GPU: {gpu_memory}MiB.* """ save_path = "output/transcript_result.csv" df_results = pd.DataFrame(objects) df_results.to_csv(save_path, index=False, encoding="utf-8") return df_results, system_info, save_path except Exception as e: raise RuntimeError("Erro a correr a inferência com um modelo local", e) # ---- Gradio Layout ----- # Inspiration from https://huggingface.co/spaces/RASMUS/Whisper-youtube-crosslingual-subtitles video_in = gr.Video(label="Ficheiro Video", mirror_webcam=False) youtube_url_in = gr.Textbox(label="Url Youtube", lines=1, interactive=True) df_init = pd.DataFrame(columns=['Início', 'Fim', 'Participante', 'Texto']) memory = psutil.virtual_memory() selected_source_lang = gr.Dropdown(choices=source_language_list, type="value", value="pt", label="Linguagem detectada no vídeo", interactive=True) selected_whisper_model = gr.Dropdown(choices=whisper_models, type="value", value="large-v2", label="Modelo Whisper selecionado", interactive=True) number_speakers = gr.Number(precision=0, value=2, label="Insira o número de participantes para obter melhores resultados. Se o valor for 0, o modelo encontrará automaticamente a melhor quantidade.", interactive=True) system_info = gr.Markdown(f"*Memoria: {memory.total / (1024 * 1024 * 1024):.2f}GB, utilizado: {memory.percent}%, disponível: {memory.available / (1024 * 1024 * 1024):.2f}GB*") download_transcript = gr.File(label="Download transcript") transcription_df = gr.DataFrame(value=df_init,label="Dataframe da transcrição", row_count=(0, "dynamic"), max_rows = 10, wrap=True, overflow_row_behaviour='paginate') title = "Whisper speaker diarization" demo = gr.Blocks(title=title) demo.encrypt = False with demo: with gr.Tab("Whisper speaker diarization"): gr.Markdown('''

Whisper diarização com participantes

Este espaço usa os modelos whisper OpenAI with CTranslate2 which is a fast inference engine for Transformer models to recognize the speech (4 times faster than original openai model with same accuracy) e o modelo ECAPA-TDNN de SpeechBrain para codificar e identificar participantes
''') with gr.Row(): gr.Markdown(''' ### Transcreva o link do youtube usando OpenAI Whisper ##### 1. Usando o modelo Whisper da Open AI para separar o áudio em segmentos e gerar transcrições. ##### 2. Gerando embeddings para cada segmento. ##### 3. Aplicando clustering aglomerativo nos embeddings para identificar o participante de cada segmento. ''') with gr.Row(): gr.Markdown(''' ### Pode testar com os seguintes exemplos: ''') examples = gr.Examples(examples= [ "https://youtu.be/mYT33lWKJyw", "https://youtu.be/ctirgguI7RM"], label="Examples", inputs=[youtube_url_in]) with gr.Row(): with gr.Column(): youtube_url_in.render() download_youtube_btn = gr.Button("Descarregar video do Youtube") download_youtube_btn.click(get_youtube, [youtube_url_in], [ video_in]) print(video_in) with gr.Row(): with gr.Column(): video_in.render() with gr.Column(): gr.Markdown(''' ##### Aqui você pode iniciar o processo de transcrição. ##### Por favor, selecione o idioma de origem para a transcrição. ##### Você pode selecionar uma faixa de números estimados de participantes. ''') selected_source_lang.render() selected_whisper_model.render() number_speakers.render() transcribe_btn = gr.Button("Transcrever audio com diarização") transcribe_btn.click(speech_to_text, [video_in, selected_source_lang, selected_whisper_model, number_speakers], [transcription_df, system_info, download_transcript] ) with gr.Row(): gr.Markdown(''' ##### Aqui vai obter a transcrição ##### ''') with gr.Row(): with gr.Column(): download_transcript.render() transcription_df.render() system_info.render() demo.launch(debug=True)