Spaces:
Sleeping
Sleeping
File size: 8,215 Bytes
60d7a89 182ca97 60d7a89 182ca97 60d7a89 182ca97 951e11b 182ca97 951e11b 182ca97 951e11b 182ca97 60d7a89 182ca97 a98fd29 182ca97 60d7a89 182ca97 60d7a89 35fbfd6 60d7a89 951e11b 60d7a89 951e11b 60d7a89 182ca97 60d7a89 aca2142 0f85829 2476671 60d7a89 bbab915 c6160bf 89eee46 60d7a89 182ca97 60d7a89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
from openai import OpenAI
import google.generativeai as genai
import os
import requests
import json
import gradio as gr
import time
import re
#export GRADIO_DEBUG=1
GENAI_API = "gemini" # or "openai"
def search_inspire(query, size=10):
"""
Search INSPIRE HEP database using fulltext search
Args:
query (str): Search query
size (int): Number of results to return
"""
base_url = "https://inspirehep.net/api/literature"
params = {
"q": query,
"size": size,
"format": "json"
}
response = requests.get(base_url, params=params)
return response.json()
def format_reference(metadata):
output = f"{', '.join(author.get('full_name', '') for author in metadata.get('authors', []))} "
output += f"({metadata.get('publication_info', [{}])[0].get('year', 'N/A')}). "
output += f"*{metadata.get('titles', [{}])[0].get('title', 'N/A')}*. "
output += f"DOI: {metadata.get('dois', [{}])[0].get('value', 'N/A') if metadata.get('dois') else 'N/A'}. "
output += f"[INSPIRE record {metadata['control_number']}](https://inspirehep.net/literature/{metadata['control_number']})"
output += "\n\n"
return output
def format_results(results):
"""Print formatted search results"""
output = ""
for i, hit in enumerate(results['hits']['hits']):
metadata = hit['metadata']
output += f"**[{i}]** "
output += format_reference(metadata)
return output
def results_context(results):
""" Prepare a context from the results for the LLM """
context = ""
for i, hit in enumerate(results['hits']['hits']):
metadata = hit['metadata']
context += f"Result [{i}]\n\n"
context += f"Title: {metadata.get('titles', [{}])[0].get('title', 'N/A')}\n\n"
context += f"Abstract: {metadata.get('abstracts', [{}])[0].get('value', 'N/A')}\n\n"
return context
def user_prompt(query, context):
""" Generate a prompt for the LLM """
prompt = f"""
QUERY: {query}
CONTEXT:
{context}
ANSWER:
"""
return prompt
def llm_expand_query(query):
""" Expands a query to variations of fulltext searches """
prompt = f"""
Expand this query into a the query format used for a search
over the INSPIRE HEP database. Propose alternatives of the query to
maximize the recall and join those variantes using OR operators.
Just provide the expanded query, without explanations.
Example of query:
how far are black holes?
Expanded query:
"how far are black holes" OR "distance from black holes" OR
"distances to black holes" OR "measurement of distance to black
holes" OR "remoteness of black holes" OR "distance to black
holes" OR "how far are singularities" OR "distance to
singularities" OR "distances to event horizon" OR "distance
from Schwarzschild radius" OR "black hole distance"
Query: {query}
Expanded query:
"""
if GENAI_API == "openai":
response = client.chat.completions.create(
model="gpt-4o-mini",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": prompt
}
]
}
],
response_format={
"type": "text"
},
temperature=0,
max_tokens=2048,
top_p=1,
frequency_penalty=0,
presence_penalty=0
)
return response.choices[0].message.content
else:
response = genai.GenerativeModel("gemini-1.5-flash").generate_content(prompt)
return response.text
def llm_generate_answer(prompt):
""" Generate a response from the LLM """
system_desc = """You are part of a Retrieval Augmented Generation system
(RAG) and are asked with a query and a context of results. Generate an
answer substantiated by the results provided and citing them using
their index when used to provide an answer text. Do not put two or more
references together (ex: use [1][2] instead of [1, 2] or [1][2][3] instead of [1, 2, 3]). Do not generate an answer
that cannot be entailed from cited abstract, so all paragraphs should cite a
search result. End the answer with the query and a brief answer as
summary of the previous discussed results. Do not consider results
that are not related to the query and, if no specific answer can be
provided, assert that in the brief answer."""
if GENAI_API == "openai":
response = client.chat.completions.create(
model="gpt-4o-mini",
messages=[
{
"role": "system",
"content": [
{
"type": "text",
"text": system_desc
}
]
},
{
"role": "user",
"content": [
{
"type": "text",
"text": prompt
}
]
}
],
response_format={
"type": "text"
},
temperature=0,
max_tokens=2048,
top_p=1,
frequency_penalty=0,
presence_penalty=0
)
return response.choices[0].message.content
else:
response = genai.GenerativeModel("gemini-1.5-flash").generate_content(system_desc + "\n\n" + prompt)
return response.text
def clean_refs(answer, results):
""" Clean the references from the answer """
# Find references
unique_ordered = []
for match in re.finditer(r'\[(\d+)\]', answer):
ref_num = int(match.group(1))
if ref_num not in unique_ordered:
unique_ordered.append(ref_num)
# Filter references
new_i = 1
new_results = ""
for i, hit in enumerate(results['hits']['hits']):
if i not in unique_ordered:
continue
metadata = hit['metadata']
new_results += f"**[{new_i}]** "
new_results += format_reference(metadata)
new_i += 1
new_i = 1
for i in unique_ordered:
answer = answer.replace(f"[{i}]", f" **[__NEW_REF_ID_{new_i}]**")
new_i += 1
answer = answer.replace("__NEW_REF_ID_", "")
return answer, new_results
def search(query, progress=gr.Progress()):
time.sleep(1)
progress(0, desc="Expanding query...")
expanded_query = llm_expand_query(query)
progress(0.25, desc="Searching INSPIRE HEP...")
results = search_inspire(expanded_query)
progress(0.50, desc="Generating answer...")
context = results_context(results)
prompt = user_prompt(query, context)
answer = llm_generate_answer(prompt)
new_answer, references = clean_refs(answer, results)
progress(1, desc="Done!")
#json_str = json.dumps(results['hits']['hits'][0]['metadata'], indent=4)
return "**Answer**:\n\n" + new_answer +"\n\n**References**:\n\n" + references #+ "\n\n <pre>\n" + json_str + "</pre>"
# ----------- MAIN ------------------------------------------------------------
if GENAI_API == "openai":
client = OpenAI()
else:
genai.configure(api_key=os.getenv('GEMINI_API_KEY'))
with gr.Blocks() as demo:
gr.Markdown("# Feynbot on INSPIRE HEP Search")
gr.Markdown("""Specialized academic search tool that combines traditional
database searching with AI-powered query expansion and result
synthesis, focused on High Energy Physics research papers.""")
with gr.Row():
with gr.Column():
query = gr.Textbox(label="Search Query")
search_btn = gr.Button("Search")
examples = gr.Examples([["Which one is closest star?"], ["In which particles does the Higgs Boson decay to?"]], query)
with gr.Row():
gr.HTML("<a href='https://sinai.ujaen.es'><img src='https://sinai.ujaen.es/sites/default/files/SINAI%20-%20logo%20tx%20azul%20%5Baf%5D.png' width='200'></img></a>")
gr.HTML("<a href='https://www.ujaen.es'><img src='https://diariodigital.ujaen.es/sites/default/files/general/logo-uja.svg' width='180'></img></a>")
with gr.Column():
results = gr.Markdown("Answer will appear here...", label="Search Results", )
search_btn.click(fn=search, inputs=query, outputs=results, api_name="search", show_progress=True)
demo.launch()
#print(search("how far are black holes?")) |