Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import random
|
4 |
+
from diffusers import DiffusionPipeline
|
5 |
+
import torch
|
6 |
+
|
7 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
8 |
+
model_repo_id = "black-forest-labs/FLUX.1-dev"
|
9 |
+
|
10 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
11 |
+
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype).to(device)
|
12 |
+
pipe.load_lora_weights("pepper13/flux-anime")
|
13 |
+
|
14 |
+
MAX_SEED = np.iinfo(np.int32).max
|
15 |
+
MAX_IMAGE_SIZE = 1024
|
16 |
+
|
17 |
+
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
|
18 |
+
if randomize_seed:
|
19 |
+
seed = random.randint(0, MAX_SEED)
|
20 |
+
generator = torch.Generator().manual_seed(seed)
|
21 |
+
|
22 |
+
image = pipe(
|
23 |
+
prompt=prompt,
|
24 |
+
negative_prompt=negative_prompt,
|
25 |
+
guidance_scale=guidance_scale,
|
26 |
+
num_inference_steps=num_inference_steps,
|
27 |
+
width=width,
|
28 |
+
height=height,
|
29 |
+
generator=generator
|
30 |
+
).images[0]
|
31 |
+
|
32 |
+
return image, seed
|
33 |
+
|
34 |
+
with gr.Blocks() as demo:
|
35 |
+
with gr.Column(elem_id="col-container"):
|
36 |
+
with gr.Row():
|
37 |
+
prompt = gr.Text(label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False)
|
38 |
+
run_button = gr.Button("Run", scale=0)
|
39 |
+
|
40 |
+
result = gr.Image(label="Result", show_label=False)
|
41 |
+
|
42 |
+
with gr.Accordion("Advanced Settings", open=False):
|
43 |
+
negative_prompt = gr.Text(label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", visible=False)
|
44 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
45 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
46 |
+
|
47 |
+
with gr.Row():
|
48 |
+
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512)
|
49 |
+
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512)
|
50 |
+
|
51 |
+
with gr.Row():
|
52 |
+
guidance_scale = gr.Slider(label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=0.0)
|
53 |
+
num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=50, step=1, value=20)
|
54 |
+
|
55 |
+
gr.on(
|
56 |
+
triggers=[run_button.click, prompt.submit],
|
57 |
+
fn=infer,
|
58 |
+
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
59 |
+
outputs=[result, seed]
|
60 |
+
)
|
61 |
+
|
62 |
+
demo.launch()
|