Spaces:
Sleeping
Sleeping
from typing import List | |
import cv2 | |
import gradio as gr | |
import numpy as np | |
import supervision as sv | |
from inference.models import YOLOWorld | |
from PIL import Image | |
import warnings | |
warnings.filterwarnings("ignore") | |
from groundingdino.util.inference import annotate as gd_annotate | |
from groundingdino.util.inference import predict, load_model | |
import groundingdino.datasets.transforms as T | |
MARKDOWN = """ | |
# YoloWGDinoArena | |
Powered by Roboflow [Inference](https://github.com/roboflow/inference) and | |
[Supervision](https://github.com/roboflow/supervision) and [YOLO-World](https://github.com/AILab-CVC/YOLO-World) and [Grounding DINO](https://github.com/IDEA-Research/GroundingDINO). | |
\n | |
Github Source Code: [Link](https://github.com/pg56714/YoloWGDinoArena) | |
""" | |
# GroundingDINO | |
config_file = "./groundingdino/config/GroundingDINO_SwinT_OGC.py" | |
ckpt_filenmae = "./weights/groundingdino_swint_ogc.pth" | |
def image_transform_grounding(init_image): | |
transform = T.Compose( | |
[ | |
T.RandomResize([800], max_size=1333), | |
T.ToTensor(), | |
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
] | |
) | |
image, _ = transform(init_image, None) | |
return init_image, image | |
def image_transform_grounding_for_vis(init_image): | |
transform = T.Compose( | |
[ | |
T.RandomResize([800], max_size=1333), | |
] | |
) | |
image, _ = transform(init_image, None) | |
return image | |
model = load_model(config_file, ckpt_filenmae) | |
def run_grounding(input_image, grounding_caption, box_threshold, text_threshold): | |
init_image = Image.fromarray(input_image.astype("uint8"), "RGB") | |
_, image_tensor = image_transform_grounding(init_image) | |
image_pil: Image = image_transform_grounding_for_vis(init_image) | |
boxes, logits, phrases = predict( | |
model, | |
image_tensor, | |
grounding_caption, | |
box_threshold, | |
text_threshold, | |
device="cpu", | |
) | |
annotated_frame = gd_annotate( | |
image_source=np.asarray(image_pil), boxes=boxes, logits=logits, phrases=phrases | |
) | |
image_with_box = Image.fromarray(cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB)) | |
return image_with_box | |
box_threshold = gr.Slider( | |
label="Box Threshold", | |
minimum=0.0, | |
maximum=1.0, | |
value=0.25, | |
step=0.001, | |
) | |
text_threshold = gr.Slider( | |
label="Text Threshold", | |
minimum=0.0, | |
maximum=1.0, | |
value=0.25, | |
step=0.001, | |
) | |
# ----------------------------------------------------------------------------------------------------------- | |
# YOLO-WORLD | |
# ----------------------------------------------------------------------------------------------------------- | |
YOLO_WORLD_MODEL = YOLOWorld(model_id="yolo_world/l") | |
BOUNDING_BOX_ANNOTATOR = sv.BoxAnnotator() | |
LABEL_ANNOTATOR = sv.LabelAnnotator() | |
def process_categories(categories: str) -> List[str]: | |
return [category.strip() for category in categories.split(",")] | |
def annotate_image( | |
input_image: np.ndarray, | |
detections: sv.Detections, | |
categories: List[str], | |
with_confidence: bool = True, | |
) -> np.ndarray: | |
labels = [ | |
( | |
f"{categories[class_id]}: {confidence:.3f}" | |
if with_confidence | |
else f"{categories[class_id]}" | |
) | |
for class_id, confidence in zip(detections.class_id, detections.confidence) | |
] | |
output_image = BOUNDING_BOX_ANNOTATOR.annotate(input_image, detections) | |
output_image = LABEL_ANNOTATOR.annotate(output_image, detections, labels=labels) | |
return output_image | |
def process_image( | |
input_image: np.ndarray, | |
categories: str, | |
confidence_threshold: float, | |
nms_threshold: float, | |
with_confidence: bool = True, | |
) -> np.ndarray: | |
categories = process_categories(categories) | |
YOLO_WORLD_MODEL.set_classes(categories) | |
results = YOLO_WORLD_MODEL.infer(input_image, confidence=confidence_threshold) | |
detections = sv.Detections.from_inference(results).with_nms( | |
class_agnostic=True, threshold=nms_threshold | |
) | |
output_image = cv2.cvtColor(input_image, cv2.COLOR_RGB2BGR) | |
output_image = annotate_image( | |
input_image=output_image, | |
detections=detections, | |
categories=categories, | |
with_confidence=with_confidence, | |
) | |
return cv2.cvtColor(output_image, cv2.COLOR_BGR2RGB) | |
confidence_threshold_component = gr.Slider( | |
minimum=0, | |
maximum=1.0, | |
value=0.005, | |
step=0.01, | |
label="Confidence Threshold", | |
# info=( | |
# "The confidence threshold for the YOLO-World model. Lower the threshold to " | |
# "reduce false negatives, enhancing the model's sensitivity to detect " | |
# "sought-after objects. Conversely, increase the threshold to minimize false " | |
# "positives, preventing the model from identifying objects it shouldn't." | |
# ), | |
) | |
iou_threshold_component = gr.Slider( | |
minimum=0, | |
maximum=1.0, | |
value=0.1, | |
step=0.01, | |
label="IoU Threshold", | |
# info=( | |
# "The Intersection over Union (IoU) threshold for non-maximum suppression. " | |
# "Decrease the value to lessen the occurrence of overlapping bounding boxes, " | |
# "making the detection process stricter. On the other hand, increase the value " | |
# "to allow more overlapping bounding boxes, accommodating a broader range of " | |
# "detections." | |
# ), | |
) | |
# ----------------------------------------------------------------------------------------------------------- | |
# View | |
with gr.Blocks() as demo: | |
gr.Markdown(MARKDOWN) | |
with gr.Row(): | |
input_image_component = gr.Image(type="numpy", label="Input Image") | |
yolo_world_output_image_component = gr.Image( | |
type="numpy", label="YOLO-WORLD Output" | |
) | |
grounding_dion_output_image_component = gr.Image( | |
type="pil", label="GroundingDINO Output" | |
) | |
with gr.Row(): | |
image_text_component = gr.Textbox( | |
label="Categories", | |
placeholder="you can input multiple words with comma (,)", | |
scale=7, | |
) | |
submit_button_component = gr.Button(value="Submit", scale=1, variant="primary") | |
with gr.Column(): | |
with gr.Accordion("YOLO-World", open=False): | |
confidence_threshold_component.render() | |
iou_threshold_component.render() | |
with gr.Accordion("GroundingDINO", open=False): | |
box_threshold.render() | |
text_threshold.render() | |
submit_button_component.click( | |
fn=process_image, | |
inputs=[ | |
input_image_component, | |
image_text_component, | |
confidence_threshold_component, | |
iou_threshold_component, | |
], | |
outputs=[ | |
yolo_world_output_image_component, | |
], | |
) | |
submit_button_component.click( | |
fn=run_grounding, | |
inputs=[ | |
input_image_component, | |
image_text_component, | |
box_threshold, | |
text_threshold, | |
], | |
outputs=[ | |
grounding_dion_output_image_component, | |
], | |
) | |
# demo.launch(debug=False, show_error=True, max_threads=1) | |
demo.launch(debug=False, show_error=True) | |