from typing import List import cv2 import gradio as gr import numpy as np import supervision as sv from inference.models import YOLOWorld from PIL import Image import warnings warnings.filterwarnings("ignore") from groundingdino.util.inference import annotate as gd_annotate from groundingdino.util.inference import predict, load_model import groundingdino.datasets.transforms as T MARKDOWN = """ # YoloWGDinoArena Powered by Roboflow [Inference](https://github.com/roboflow/inference) and [Supervision](https://github.com/roboflow/supervision) and [YOLO-World](https://github.com/AILab-CVC/YOLO-World) and [Grounding DINO](https://github.com/IDEA-Research/GroundingDINO). \n Github Source Code: [Link](https://github.com/pg56714/YoloWGDinoArena) """ # GroundingDINO config_file = "./groundingdino/config/GroundingDINO_SwinT_OGC.py" ckpt_filenmae = "./weights/groundingdino_swint_ogc.pth" def image_transform_grounding(init_image): transform = T.Compose( [ T.RandomResize([800], max_size=1333), T.ToTensor(), T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ] ) image, _ = transform(init_image, None) return init_image, image def image_transform_grounding_for_vis(init_image): transform = T.Compose( [ T.RandomResize([800], max_size=1333), ] ) image, _ = transform(init_image, None) return image model = load_model(config_file, ckpt_filenmae) def run_grounding(input_image, grounding_caption, box_threshold, text_threshold): init_image = Image.fromarray(input_image.astype("uint8"), "RGB") _, image_tensor = image_transform_grounding(init_image) image_pil: Image = image_transform_grounding_for_vis(init_image) boxes, logits, phrases = predict( model, image_tensor, grounding_caption, box_threshold, text_threshold, device="cpu", ) annotated_frame = gd_annotate( image_source=np.asarray(image_pil), boxes=boxes, logits=logits, phrases=phrases ) image_with_box = Image.fromarray(cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB)) return image_with_box box_threshold = gr.Slider( label="Box Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001, ) text_threshold = gr.Slider( label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001, ) # ----------------------------------------------------------------------------------------------------------- # YOLO-WORLD # ----------------------------------------------------------------------------------------------------------- YOLO_WORLD_MODEL = YOLOWorld(model_id="yolo_world/l") BOUNDING_BOX_ANNOTATOR = sv.BoxAnnotator() LABEL_ANNOTATOR = sv.LabelAnnotator() def process_categories(categories: str) -> List[str]: return [category.strip() for category in categories.split(",")] def annotate_image( input_image: np.ndarray, detections: sv.Detections, categories: List[str], with_confidence: bool = True, ) -> np.ndarray: labels = [ ( f"{categories[class_id]}: {confidence:.3f}" if with_confidence else f"{categories[class_id]}" ) for class_id, confidence in zip(detections.class_id, detections.confidence) ] output_image = BOUNDING_BOX_ANNOTATOR.annotate(input_image, detections) output_image = LABEL_ANNOTATOR.annotate(output_image, detections, labels=labels) return output_image def process_image( input_image: np.ndarray, categories: str, confidence_threshold: float, nms_threshold: float, with_confidence: bool = True, ) -> np.ndarray: categories = process_categories(categories) YOLO_WORLD_MODEL.set_classes(categories) results = YOLO_WORLD_MODEL.infer(input_image, confidence=confidence_threshold) detections = sv.Detections.from_inference(results).with_nms( class_agnostic=True, threshold=nms_threshold ) output_image = cv2.cvtColor(input_image, cv2.COLOR_RGB2BGR) output_image = annotate_image( input_image=output_image, detections=detections, categories=categories, with_confidence=with_confidence, ) return cv2.cvtColor(output_image, cv2.COLOR_BGR2RGB) confidence_threshold_component = gr.Slider( minimum=0, maximum=1.0, value=0.005, step=0.01, label="Confidence Threshold", # info=( # "The confidence threshold for the YOLO-World model. Lower the threshold to " # "reduce false negatives, enhancing the model's sensitivity to detect " # "sought-after objects. Conversely, increase the threshold to minimize false " # "positives, preventing the model from identifying objects it shouldn't." # ), ) iou_threshold_component = gr.Slider( minimum=0, maximum=1.0, value=0.1, step=0.01, label="IoU Threshold", # info=( # "The Intersection over Union (IoU) threshold for non-maximum suppression. " # "Decrease the value to lessen the occurrence of overlapping bounding boxes, " # "making the detection process stricter. On the other hand, increase the value " # "to allow more overlapping bounding boxes, accommodating a broader range of " # "detections." # ), ) # ----------------------------------------------------------------------------------------------------------- # View with gr.Blocks() as demo: gr.Markdown(MARKDOWN) with gr.Row(): input_image_component = gr.Image(type="numpy", label="Input Image") yolo_world_output_image_component = gr.Image( type="numpy", label="YOLO-WORLD Output" ) grounding_dion_output_image_component = gr.Image( type="pil", label="GroundingDINO Output" ) with gr.Row(): image_text_component = gr.Textbox( label="Categories", placeholder="you can input multiple words with comma (,)", scale=7, ) submit_button_component = gr.Button(value="Submit", scale=1, variant="primary") with gr.Column(): with gr.Accordion("YOLO-World", open=False): confidence_threshold_component.render() iou_threshold_component.render() with gr.Accordion("GroundingDINO", open=False): box_threshold.render() text_threshold.render() submit_button_component.click( fn=process_image, inputs=[ input_image_component, image_text_component, confidence_threshold_component, iou_threshold_component, ], outputs=[ yolo_world_output_image_component, ], ) submit_button_component.click( fn=run_grounding, inputs=[ input_image_component, image_text_component, box_threshold, text_threshold, ], outputs=[ grounding_dion_output_image_component, ], ) # demo.launch(debug=False, show_error=True, max_threads=1) demo.launch(debug=False, show_error=True)