Spaces:
Running
on
A10G
Running
on
A10G
pharmapsychotic
commited on
Commit
•
53924ae
1
Parent(s):
9db4527
app.py
CHANGED
@@ -57,7 +57,7 @@ class LabelTable():
|
|
57 |
self.embeds = []
|
58 |
chunks = np.array_split(self.labels, max(1, len(self.labels)/chunk_size))
|
59 |
for chunk in tqdm(chunks, desc=f"Preprocessing {desc}" if desc else None):
|
60 |
-
text_tokens = clip.tokenize(chunk).
|
61 |
with torch.no_grad():
|
62 |
text_features = clip_model.encode_text(text_tokens).float()
|
63 |
text_features /= text_features.norm(dim=-1, keepdim=True)
|
@@ -113,7 +113,7 @@ def load_list(filename):
|
|
113 |
return items
|
114 |
|
115 |
def rank_top(image_features, text_array):
|
116 |
-
text_tokens = clip.tokenize([text for text in text_array]).
|
117 |
with torch.no_grad():
|
118 |
text_features = clip_model.encode_text(text_tokens).float()
|
119 |
text_features /= text_features.norm(dim=-1, keepdim=True)
|
@@ -126,7 +126,7 @@ def rank_top(image_features, text_array):
|
|
126 |
return text_array[top_labels[0][0].numpy()]
|
127 |
|
128 |
def similarity(image_features, text):
|
129 |
-
text_tokens = clip.tokenize([text]).
|
130 |
with torch.no_grad():
|
131 |
text_features = clip_model.encode_text(text_tokens).float()
|
132 |
text_features /= text_features.norm(dim=-1, keepdim=True)
|
@@ -136,7 +136,7 @@ def similarity(image_features, text):
|
|
136 |
def interrogate(image):
|
137 |
caption = generate_caption(image)
|
138 |
|
139 |
-
images = clip_preprocess(image).unsqueeze(0).
|
140 |
with torch.no_grad():
|
141 |
image_features = clip_model.encode_image(images).float()
|
142 |
image_features /= image_features.norm(dim=-1, keepdim=True)
|
|
|
57 |
self.embeds = []
|
58 |
chunks = np.array_split(self.labels, max(1, len(self.labels)/chunk_size))
|
59 |
for chunk in tqdm(chunks, desc=f"Preprocessing {desc}" if desc else None):
|
60 |
+
text_tokens = clip.tokenize(chunk).to(device)
|
61 |
with torch.no_grad():
|
62 |
text_features = clip_model.encode_text(text_tokens).float()
|
63 |
text_features /= text_features.norm(dim=-1, keepdim=True)
|
|
|
113 |
return items
|
114 |
|
115 |
def rank_top(image_features, text_array):
|
116 |
+
text_tokens = clip.tokenize([text for text in text_array]).to(device)
|
117 |
with torch.no_grad():
|
118 |
text_features = clip_model.encode_text(text_tokens).float()
|
119 |
text_features /= text_features.norm(dim=-1, keepdim=True)
|
|
|
126 |
return text_array[top_labels[0][0].numpy()]
|
127 |
|
128 |
def similarity(image_features, text):
|
129 |
+
text_tokens = clip.tokenize([text]).to(device)
|
130 |
with torch.no_grad():
|
131 |
text_features = clip_model.encode_text(text_tokens).float()
|
132 |
text_features /= text_features.norm(dim=-1, keepdim=True)
|
|
|
136 |
def interrogate(image):
|
137 |
caption = generate_caption(image)
|
138 |
|
139 |
+
images = clip_preprocess(image).unsqueeze(0).to(device)
|
140 |
with torch.no_grad():
|
141 |
image_features = clip_model.encode_image(images).float()
|
142 |
image_features /= image_features.norm(dim=-1, keepdim=True)
|