Spaces:
Running
on
A10G
Running
on
A10G
pharmapsychotic
commited on
Commit
•
7ac65ca
1
Parent(s):
d272750
First test for HuggingSpace
Browse files- app.py +61 -0
- example.jpg +0 -0
- requirements.txt +9 -0
app.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import sys
|
3 |
+
import torch
|
4 |
+
import torchvision.transforms as T
|
5 |
+
import torchvision.transforms.functional as TF
|
6 |
+
|
7 |
+
sys.path.append('src/blip')
|
8 |
+
sys.path.append('src/clip')
|
9 |
+
|
10 |
+
import clip
|
11 |
+
from models.blip import blip_decoder
|
12 |
+
|
13 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
14 |
+
|
15 |
+
print("Loading BLIP model...")
|
16 |
+
blip_image_eval_size = 384
|
17 |
+
blip_model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_large_caption.pth'
|
18 |
+
blip_model = blip_decoder(pretrained=blip_model_url, image_size=blip_image_eval_size, vit='large', med_config='./src/blip/configs/med_config.json')
|
19 |
+
blip_model.eval()
|
20 |
+
blip_model = blip_model.to(device)
|
21 |
+
|
22 |
+
print("Loading CLIP model...")
|
23 |
+
clip_model_name = 'ViT-L/14'
|
24 |
+
clip_model, clip_preprocess = clip.load(clip_model_name, device=device)
|
25 |
+
clip_model.to(device).eval()
|
26 |
+
|
27 |
+
|
28 |
+
def generate_caption(pil_image):
|
29 |
+
gpu_image = T.Compose([
|
30 |
+
T.Resize((blip_image_eval_size, blip_image_eval_size), interpolation=TF.InterpolationMode.BICUBIC),
|
31 |
+
T.ToTensor(),
|
32 |
+
T.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
|
33 |
+
])(pil_image).unsqueeze(0).to(device)
|
34 |
+
|
35 |
+
with torch.no_grad():
|
36 |
+
caption = blip_model.generate(gpu_image, sample=False, num_beams=3, max_length=20, min_length=5)
|
37 |
+
return caption[0]
|
38 |
+
|
39 |
+
def inference(image):
|
40 |
+
return generate_caption(image)
|
41 |
+
|
42 |
+
inputs = [gr.inputs.Image(type='pil')]
|
43 |
+
outputs = gr.outputs.Textbox(label="Output")
|
44 |
+
|
45 |
+
title = "CLIP Interrogator"
|
46 |
+
description = "First test of CLIP Interrogator on HuggingSpace"
|
47 |
+
article = """
|
48 |
+
<p style='text-align: center'>
|
49 |
+
<a href="">Colab Notebook</a> /
|
50 |
+
<a href="">Github repo</a>
|
51 |
+
</p>
|
52 |
+
"""
|
53 |
+
|
54 |
+
gr.Interface(
|
55 |
+
inference,
|
56 |
+
inputs,
|
57 |
+
outputs,
|
58 |
+
title=title, description=description,
|
59 |
+
article=article,
|
60 |
+
examples=[['example.jpg']]
|
61 |
+
).launch(enable_queue=True)
|
example.jpg
ADDED
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fairscale
|
2 |
+
ftfy
|
3 |
+
Pillow
|
4 |
+
timm
|
5 |
+
torch
|
6 |
+
torchvision
|
7 |
+
transformers==4.21.2
|
8 |
+
-e git+https://github.com/openai/CLIP.git@main#egg=clip
|
9 |
+
-e git+https://github.com/salesforce/BLIP.git@main#egg=blip
|