File size: 23,135 Bytes
6ade49b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
from dataclasses import dataclass
from typing import Dict, Optional, Tuple, Literal

import torch
import numpy

from transformers import Trainer, PreTrainedModel, RobertaForSequenceClassification, BatchEncoding, RobertaConfig, \
    EvalPrediction
from transformers.modeling_outputs import SequenceClassifierOutput, BaseModelOutput
from loguru import logger


def val_nov_loss(is_val: torch.Tensor, should_val: torch.Tensor, is_nov: torch.Tensor, should_nov: torch.Tensor,
                 weights: Optional[torch.Tensor] = None, reduce: bool = True) -> torch.Tensor:
    if weights is None:
        weights = torch.ones_like(should_val)
        logger.debug("No weights-vector - assume, all {} samples should count equally", weights.size())

    loss_validity = torch.pow(is_val - torch.where(torch.isnan(should_val), is_val, should_val), 2)
    loss_novelty = torch.pow(is_nov - torch.where(torch.isnan(should_nov), is_nov, should_nov), 2)

    logger.trace("loss_validity: {} / loss_novelty: {}", loss_validity, loss_novelty)

    loss = (.5 * (loss_validity * loss_novelty) + .5 * loss_validity + .5 * loss_novelty) * weights

    return torch.mean(loss) if reduce else loss


def val_nov_metric(eval_data: EvalPrediction) -> Dict[str, float]:
    if isinstance(eval_data.predictions, Tuple) and isinstance(eval_data.label_ids, Tuple) \
            or min(len(eval_data.predictions), len(eval_data.label_ids)) >= 2:
        logger.trace("Format is as processable ({}: {})", type(eval_data.predictions), len(eval_data.predictions))
        if len(eval_data.predictions) != 2:
            logger.debug("We expect 2 tuples, but get {}: {}", len(eval_data.predictions), eval_data.predictions)

        is_validity = eval_data.predictions[-2]
        should_validity = eval_data.label_ids[-2]
        is_novelty = eval_data.predictions[-1]
        should_novelty = eval_data.label_ids[-1]

        return _val_nov_metric(is_validity=is_validity, should_validity=should_validity,
                               is_novelty=is_novelty, should_novelty=should_novelty)
    else:
        logger.warning("This metric can't return all metrics properly, "
                       "because validity and novelty are not distinguishable")

        return {
            "size": numpy.size(eval_data.label_ids),
            "mse_validity": numpy.mean((eval_data.predictions-eval_data.label_ids) ** 2),
            "mse_novelty": numpy.mean((eval_data.predictions-eval_data.label_ids) ** 2),
            "error_validity": numpy.mean(numpy.abs(eval_data.predictions-eval_data.label_ids)),
            "error_novelty": numpy.mean(numpy.abs(eval_data.predictions-eval_data.label_ids)),
            "approximately_hits_validity": -1,
            "approximately_hits_novelty": -1,
            "exact_hits_validity": -1,
            "exact_hits_novelty": -1,
            "approximately_hits": numpy.count_nonzero(
                numpy.where(numpy.abs(eval_data.predictions-eval_data.label_ids) < .2, 1, 0)
            ) / numpy.size(eval_data.predictions),
            "exact_hits": numpy.count_nonzero(
                numpy.where(numpy.abs(eval_data.predictions-eval_data.label_ids) < .05, 1, 0)
            ) / numpy.size(eval_data.predictions),
            "accuracy_validity": -1,
            "accuracy_novelty": -1,
            "accuracy": -1,
            "f1_validity": -1,
            "f1_novelty": -1,
            "f1_macro": -1,
            "never_predicted_classes": 4
        }


def _val_nov_metric(is_validity: numpy.ndarray, should_validity: numpy.ndarray,
                    is_novelty: numpy.ndarray, should_novelty: numpy.ndarray) -> Dict[str, float]:
    ret = {
        "size": numpy.size(is_validity),
        "mse_validity": numpy.mean((is_validity - should_validity) ** 2),
        "mse_novelty": numpy.mean((is_novelty - should_novelty) ** 2),
        "error_validity": numpy.mean(numpy.abs(is_validity - should_validity)),
        "error_novelty": numpy.mean(numpy.abs(is_novelty - should_novelty)),
        "approximately_hits_validity": numpy.sum(
            numpy.where(numpy.abs(is_validity - should_validity) < .2, 1, 0)) / numpy.size(is_validity),
        "approximately_hits_novelty": numpy.sum(
            numpy.where(numpy.abs(is_novelty - should_novelty) < .2, 1, 0)) / numpy.size(is_novelty),
        "exact_hits_validity": numpy.sum(
            numpy.where(numpy.abs(is_validity - should_validity) < .05, 1, 0)) / numpy.size(is_validity),
        "exact_hits_novelty": numpy.sum(
            numpy.where(numpy.abs(is_novelty - should_novelty) < .05, 1, 0)) / numpy.size(is_novelty),
        "approximately_hits": numpy.sum(
            numpy.where(numpy.abs(is_validity - should_validity) + numpy.abs(is_novelty - should_novelty) < .25, 1, 0)
        ) / numpy.size(is_validity),
        "exact_hits": numpy.sum(
            numpy.where(numpy.abs(is_validity - should_validity) + numpy.abs(is_novelty - should_novelty) < .05, 1, 0)
        ) / numpy.size(is_validity),
        "accuracy_validity": numpy.sum(numpy.where(
            numpy.any(numpy.stack([
                numpy.all(numpy.stack([is_validity >= .5, should_validity >= .5]), axis=0),
                numpy.all(numpy.stack([is_validity < .5, should_validity < .5]), axis=0)
            ]), axis=0),
            1, 0
        )) / numpy.size(is_validity),
        "accuracy_novelty": numpy.sum(numpy.where(
            numpy.any(numpy.stack([
                numpy.all(numpy.stack([is_novelty >= .5, should_novelty >= .5]), axis=0),
                numpy.all(numpy.stack([is_novelty < .5, should_novelty < .5]), axis=0)
            ]), axis=0),
            1, 0
        )) / numpy.size(is_validity),
        "accuracy": numpy.sum(numpy.where(
            numpy.any(numpy.stack([
                numpy.all(numpy.stack([is_validity >= .5, should_validity >= .5, is_novelty >= .5, should_novelty >= .5]),
                          axis=0),
                numpy.all(numpy.stack([is_validity >= .5, should_validity >= .5, is_novelty < .5, should_novelty < .5]),
                          axis=0),
                numpy.all(numpy.stack([is_validity < .5, should_validity < .5, is_novelty >= .5, should_novelty >= .5]),
                          axis=0),
                numpy.all(numpy.stack([is_validity < .5, should_validity < .5, is_novelty < .5, should_novelty < .5]),
                          axis=0)
            ]), axis=0),
            1, 0
        )) / numpy.size(is_validity),
        "never_predicted_classes": sum(
            [int(numpy.all(numpy.abs(is_validity-validity) < .5) and numpy.all(numpy.abs(is_novelty-novelty) < .5))
             for validity, novelty in [(1, 1), (1, 0), (0, 1), (0, 0)]]
        )
    }

    ret_base_help = {
        "true_positive_validity": numpy.sum(numpy.where(
            numpy.all(numpy.stack([is_validity >= .5, should_validity >= .5]), axis=0),
            1, 0)),
        "true_negative_validity": numpy.sum(numpy.where(
            numpy.all(numpy.stack([is_validity < .5, should_validity < .5]), axis=0),
            1, 0)),
        "true_positive_novelty": numpy.sum(numpy.where(
            numpy.all(numpy.stack([is_novelty >= .5, should_novelty >= .5]), axis=0),
            1, 0)),
        "true_negative_novelty": numpy.sum(numpy.where(
            numpy.all(numpy.stack([is_novelty < .5, should_novelty < .5]), axis=0),
            1, 0)),
        "true_positive_valid_novel": numpy.sum(numpy.where(
            numpy.all(numpy.stack([is_validity >= .5, is_novelty >= .5,
                                   should_validity >= .5, should_novelty >= .5]), axis=0),
            1, 0)),
        "true_positive_nonvalid_novel": numpy.sum(numpy.where(
            numpy.all(numpy.stack([is_validity < .5, is_novelty >= .5,
                                   should_validity < .5, should_novelty >= .5]), axis=0),
            1, 0)),
        "true_positive_valid_nonnovel": numpy.sum(numpy.where(
            numpy.all(numpy.stack([is_validity >= .5, is_novelty < .5,
                                   should_validity >= .5, should_novelty < .5]), axis=0),
            1, 0)),
        "true_positive_nonvalid_nonnovel": numpy.sum(numpy.where(
            numpy.all(numpy.stack([is_validity < .5, is_novelty < .5,
                                   should_validity < .5, should_novelty < .5]), axis=0),
            1, 0)),
        "classified_positive_validity": numpy.sum(numpy.where(is_validity >= .5, 1, 0)),
        "classified_negative_validity": numpy.sum(numpy.where(is_validity < .5, 1, 0)),
        "classified_positive_novelty": numpy.sum(numpy.where(is_novelty >= .5, 1, 0)),
        "classified_negative_novelty": numpy.sum(numpy.where(is_novelty < .5, 1, 0)),
        "classified_positive_valid_novel": numpy.sum(numpy.where(
            numpy.all(numpy.stack([is_validity >= .5, is_novelty >= .5]), axis=0),
            1, 0)),
        "classified_positive_nonvalid_novel": numpy.sum(numpy.where(
            numpy.all(numpy.stack([is_validity < .5, is_novelty >= .5]), axis=0),
            1, 0)),
        "classified_positive_valid_nonnovel": numpy.sum(numpy.where(
            numpy.all(numpy.stack([is_validity >= .5, is_novelty < .5]), axis=0),
            1, 0)),
        "classified_positive_nonvalid_nonnovel": numpy.sum(numpy.where(
            numpy.all(numpy.stack([is_validity < .5, is_novelty < .5]), axis=0),
            1, 0)),
        "indeed_positive_validity": numpy.sum(numpy.where(should_validity >= .5, 1, 0)),
        "indeed_negative_validity": numpy.sum(numpy.where(should_validity < .5, 1, 0)),
        "indeed_positive_novelty": numpy.sum(numpy.where(should_novelty >= .5, 1, 0)),
        "indeed_negative_novelty": numpy.sum(numpy.where(should_novelty < .5, 1, 0)),
        "indeed_positive_valid_novel": numpy.sum(numpy.where(
            numpy.all(numpy.stack([should_validity >= .5, should_novelty >= .5]), axis=0),
            1, 0)),
        "indeed_positive_nonvalid_novel": numpy.sum(numpy.where(
            numpy.all(numpy.stack([should_validity < .5, should_novelty >= .5]), axis=0),
            1, 0)),
        "indeed_positive_valid_nonnovel": numpy.sum(numpy.where(
            numpy.all(numpy.stack([should_validity >= .5, should_novelty < .5]), axis=0),
            1, 0)),
        "indeed_positive_nonvalid_nonnovel": numpy.sum(numpy.where(
            numpy.all(numpy.stack([should_validity < .5, should_novelty < .5]), axis=0),
            1, 0)),
    }

    ret_help = {
        "precision_validity": ret_base_help["true_positive_validity"] /
                              max(1, ret_base_help["classified_positive_validity"]),
        "precision_novelty": ret_base_help["true_positive_novelty"] /
                             max(1, ret_base_help["classified_positive_novelty"]),
        "recall_validity": ret_base_help["true_positive_validity"] /
                           max(1, ret_base_help["indeed_positive_validity"]),
        "recall_novelty": ret_base_help["true_positive_novelty"] /
                          max(1, ret_base_help["indeed_positive_novelty"]),
        "precision_val_neg": ret_base_help["true_negative_validity"] /
                              max(1, ret_base_help["classified_negative_validity"]),
        "precision_nov_neg": ret_base_help["true_negative_novelty"] /
                             max(1, ret_base_help["classified_negative_novelty"]),
        "recall_val_neg": ret_base_help["true_negative_validity"] /
                           max(1, ret_base_help["indeed_negative_validity"]),
        "recall_nov_neg": ret_base_help["true_negative_novelty"] /
                          max(1, ret_base_help["indeed_negative_novelty"]),
        "precision_valid_novel": ret_base_help["true_positive_valid_novel"] /
                                 max(1, ret_base_help["classified_positive_valid_novel"]),
        "precision_valid_nonnovel": ret_base_help["true_positive_valid_nonnovel"] /
                                    max(1, ret_base_help["classified_positive_valid_nonnovel"]),
        "precision_nonvalid_novel": ret_base_help["true_positive_nonvalid_novel"] /
                                    max(1, ret_base_help["classified_positive_nonvalid_novel"]),
        "precision_nonvalid_nonnovel": ret_base_help["true_positive_nonvalid_nonnovel"] /
                                       max(1, ret_base_help["classified_positive_nonvalid_nonnovel"]),
        "recall_valid_novel": ret_base_help["true_positive_valid_novel"] /
                              max(1, ret_base_help["indeed_positive_valid_novel"]),
        "recall_valid_nonnovel": ret_base_help["true_positive_valid_nonnovel"] /
                                 max(1, ret_base_help["indeed_positive_valid_nonnovel"]),
        "recall_nonvalid_novel": ret_base_help["true_positive_nonvalid_novel"] /
                                 max(1, ret_base_help["indeed_positive_nonvalid_novel"]),
        "recall_nonvalid_nonnovel": ret_base_help["true_positive_nonvalid_nonnovel"] /
                                    max(1, ret_base_help["indeed_positive_nonvalid_nonnovel"])
    }

    ret.update({
        "f1_validity": 2 * ret_help["precision_validity"] * ret_help["recall_validity"] /
                       max(1e-4, ret_help["precision_validity"] + ret_help["recall_validity"]),
        "f1_novelty": 2 * ret_help["precision_novelty"] * ret_help["recall_novelty"] /
                      max(1e-4, ret_help["precision_novelty"] + ret_help["recall_novelty"]),
        "f1_val_neg": 2 * ret_help["precision_val_neg"] * ret_help["recall_val_neg"] /
                      max(1e-4, ret_help["precision_val_neg"] + ret_help["recall_val_neg"]),
        "f1_nov_neg": 2 * ret_help["precision_nov_neg"] * ret_help["recall_nov_neg"] /
                      max(1e-4, ret_help["precision_nov_neg"] + ret_help["recall_nov_neg"]),
        "f1_valid_novel": 2 * ret_help["precision_valid_novel"] * ret_help["recall_valid_novel"] /
                          max(1e-4, ret_help["precision_valid_novel"] + ret_help["recall_valid_novel"]),
        "f1_valid_nonnovel": 2 * ret_help["precision_valid_nonnovel"] * ret_help["recall_valid_nonnovel"] /
                             max(1e-4, ret_help["precision_valid_nonnovel"] + ret_help["recall_valid_nonnovel"]),
        "f1_nonvalid_novel": 2 * ret_help["precision_nonvalid_novel"] * ret_help["recall_nonvalid_novel"] /
                             max(1e-4, ret_help["precision_nonvalid_novel"] + ret_help["recall_nonvalid_novel"]),
        "f1_nonvalid_nonnovel": 2 * ret_help["precision_nonvalid_nonnovel"] * ret_help["recall_nonvalid_nonnovel"] /
                                max(1e-4, ret_help["precision_nonvalid_nonnovel"] + ret_help["recall_nonvalid_nonnovel"])
    })

    ret.update({
        "f1_val_macro": (ret["f1_validity"] + ret["f1_val_neg"])/2,
        "f1_nov_macro": (ret["f1_novelty"] + ret["f1_nov_neg"])/2,
        "f1_macro": (ret["f1_valid_novel"]+ret["f1_valid_nonnovel"]+ret["f1_nonvalid_novel"]+ret["f1_nonvalid_nonnovel"])/4
    })

    logger.info("Clean the metric-dict before returning: {}",
                " / ".join(map(lambda key: "{}: {}".format(key, ret.pop(key)),
                               ["approximately_hits_validity", "approximately_hits_novelty", "exact_hits_validity",
                                "exact_hits_novelty", "size"])))

    return ret


# noinspection PyMethodMayBeStatic
class ValNovTrainer(Trainer):
    def compute_loss(self, model: PreTrainedModel, inputs: Dict[str, torch.Tensor], return_outputs=False):
        try:
            validity = inputs.pop("validity")
            novelty = inputs.pop("novelty")
            weights = inputs.pop("weight")
            logger.trace("The batch contain following validity-scores ({}), novelty-scores ({}) and weights ({})",
                         validity, novelty, weights)

            outputs = model(**inputs)

            if isinstance(outputs, ValNovOutput) and outputs.loss is not None:
                logger.debug("The loss was already computed: {}", outputs.loss)
                return (outputs.loss, outputs) if return_outputs else outputs.loss

            if isinstance(outputs, ValNovOutput):
                is_val = outputs.validity
                is_nov = outputs.novelty
            else:
                logger.warning("The output of you model {} is a {}, bit should be a ValNovOutput",
                               model.name_or_path, type(outputs))
                is_val = outputs[0] if isinstance(outputs, Tuple) and len(outputs) >= 2 else outputs
                is_nov = outputs[1] if isinstance(outputs, Tuple) and len(outputs) >= 2 else outputs

            loss = val_nov_loss(is_val=is_val, is_nov=is_nov,
                                should_val=validity, should_nov=novelty,
                                weights=weights)

            return (loss, outputs) if return_outputs else loss
        except KeyError:
            logger.opt(exception=True).error("Something in your configuration / plugged model is false")

        return (torch.zeros((0,), dtype=torch.float), model(**inputs)) if return_outputs \
            else torch.zeros((0,), dtype=torch.float)


@dataclass
class ValNovOutput(SequenceClassifierOutput):
    validity: torch.FloatTensor = None
    novelty: torch.FloatTensor = None


class ValNovRegressor(torch.nn.Module):
    def __init__(self, transformer: PreTrainedModel,
                 loss: Literal["ignore", "compute", "compute and reduce"] = "ignore"):
        super(ValNovRegressor, self).__init__()

        self.transformer = transformer
        try:
            self.regression_layer_validity = torch.nn.Linear(in_features=transformer.config.hidden_size, out_features=1)
            self.regression_layer_novelty = torch.nn.Linear(in_features=transformer.config.hidden_size, out_features=1)
        except AttributeError:
            logger.opt(exception=True).warning("No hidden-size... please use a XXXForMaskedLM-Model!")
            self.regression_layer_validity = torch.nn.LazyLinear(out_features=1)
            self.regression_layer_novelty = torch.nn.LazyLinear(out_features=1)

        self.sigmoid = torch.nn.Sigmoid()
        if loss == "ignore":
            logger.info("torch-Module without an additional loss computation during the forward-pass - "
                        "has to be done explicitly in the training loop!")
        self.loss = loss

        logger.success("Successfully created {}", self)

    def forward(self, x: BatchEncoding) -> ValNovOutput:
        transformer_cls: BaseModelOutput = self.transformer(input_ids=x["input_ids"],
                                                            attention_mask=x["attention_mask"],
                                                            token_type_ids=x["token_type_ids"],
                                                            return_dict=True)

        cls_logits = transformer_cls.last_hidden_state[0]

        validity_logits = self.regression_layer_validity(cls_logits)
        novelty_logits = self.regression_layer_novelty(cls_logits)

        return ValNovOutput(
            logits=torch.stack([validity_logits, novelty_logits]),
            loss=val_nov_loss(is_val=self.sigmoid(validity_logits),
                              is_nov=self.sigmoid(novelty_logits),
                              should_val=x["validity"],
                              should_nov=x["novelty"],
                              weights=x.get("weight", None),
                              reduce=self.loss == "compute and reduce"
                              ) if self.loss != "ignore" and "validity" in x and "novelty" in x else None,
            hidden_states=transformer_cls.hidden_states,
            attentions=transformer_cls.attentions,
            validity=self.sigmoid(validity_logits),
            novelty=self.sigmoid(novelty_logits)
        )

    def __str__(self) -> str:
        return "() --> ({} --> validity/ {} --> novelty)".format(self.transformer.name_or_path,
                                                                 self.regression_layer_validity,
                                                                 self.regression_layer_novelty)


class RobertaForValNovRegression(RobertaForSequenceClassification):
    def __init__(self, *model_args, **model_kwargs):
        config = RobertaForValNovRegression.get_config()

        configs = [arg for arg in model_args if isinstance(arg, RobertaConfig)]
        if len(configs) >= 1:
            logger.warning("Found already {} config {}... extend it", len(configs), configs[0])
            model_args = [arg for arg in model_args if not isinstance(arg, RobertaConfig)]
            config = configs[0]
            config.num_labels = 2
            config.id2label = {
                0: "validity",
                1: "novelty"
            }
            config.return_dict = True

        super().__init__(config=config, *model_args, **model_kwargs)

        self.loss = "compute"
        self.sigmoid = torch.nn.Sigmoid()

    @classmethod
    def get_config(cls) -> RobertaConfig:
        config = RobertaConfig()
        config.finetuning_task = "Validity-Novelty-Prediction"
        config.num_labels = 2
        config.id2label = {
            0: "validity",
            1: "novelty"
        }
        config.return_dict = True

        return config

    def forward(self, **kwargs):
        logger.trace("Found {} forward-params", len(kwargs))
        if "labels" in kwargs:
            labels = kwargs.pop("labels")
            logger.warning("Found a disturbing param in forward-function: labels ({})", labels)
        if "return_dict" in kwargs:
            return_dict = kwargs.pop("return_dict")
            logger.warning("Found a disturbing param in forward-function: return_dict ({})", return_dict)

        should_validity = None
        if "validity" in kwargs:
            should_validity = kwargs.pop("validity")
            logger.trace("Found a target validity-vector: {}", should_validity)

        should_novelty = None
        if "novelty" in kwargs:
            should_novelty = kwargs.pop("novelty")
            logger.trace("Found a target novelty-vector: {}", should_novelty)

        weights = None
        if "weight" in kwargs:
            weights = kwargs.pop("weight")
            logger.trace("Found a sample-weights-vector: {}", weights)

        out: SequenceClassifierOutput = super().forward(**kwargs)
        is_validity = self.sigmoid(out.logits[:, 0])
        is_novelty = self.sigmoid(out.logits[:, 1])

        return ValNovOutput(
            attentions=out.attentions,
            hidden_states=out.hidden_states,
            logits=out.logits,
            loss=val_nov_loss(
                is_val=is_validity,
                is_nov=is_novelty,
                should_val=should_validity,
                should_nov=should_novelty,
                weights=weights,
                reduce=self.loss == "compute and reduce"
            ) if self.loss != "ignore" and should_validity is not None and should_novelty is not None else None,
            validity=is_validity,
            novelty=is_novelty
        )