File size: 2,019 Bytes
6001e3c
6bc9074
e845246
6bc9074
6001e3c
6bc9074
 
e845246
 
 
 
6bc9074
 
223ef25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bc9074
8c7013a
223ef25
8c7013a
223ef25
13518e4
8c7013a
 
 
 
 
 
 
6bc9074
 
 
8c7013a
 
 
 
 
 
 
 
 
6bc9074
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import gradio as gr
import spaces
import torch
from diffusers import DiffusionPipeline


model_name = 'UnfilteredAI/NSFW-gen-v2'
pipe = DiffusionPipeline.from_pretrained(
    model_name,
    torch_dtype=torch.float16
)
pipe.to('cuda')


def build_embeddings(enhanced_prompt, negative_prompt=None):
    max_length = pipe.tokenizer.model_max_length

    input_ids = pipe.tokenizer(enhanced_prompt, return_tensors="pt").input_ids
    input_ids = input_ids.to("cuda")

    negative_ids = pipe.tokenizer(
        negative_prompt or "",
        truncation=False,
        padding="max_length",
        max_length=input_ids.shape[-1],
        return_tensors="pt"
    ).input_ids
    negative_ids = negative_ids.to("cuda")

    concat_embeds = []
    neg_embeds = []
    for i in range(0, input_ids.shape[-1], max_length):
        concat_embeds.append(pipe.text_encoder(input_ids[:, i: i + max_length])[0])
        neg_embeds.append(pipe.text_encoder(negative_ids[:, i: i + max_length])[0])

    prompt_embeds = torch.cat(concat_embeds, dim=1)
    negative_prompt_embeds = torch.cat(neg_embeds, dim=1)
    return prompt_embeds, negative_prompt_embeds


@spaces.GPU
def generate(prompt, negative_prompt, num_inference_steps, guidance_scale, width, height, num_samples):
    prompt_embeds, neg_prompt_embeds = build_embeddings(prompt, negative_prompt)
    return pipe(
        prompt_embeds=prompt_embeds,
        negative_prompt_embeds=neg_prompt_embeds,
        num_inference_steps=num_inference_steps,
        guidance_scale=guidance_scale,
        width=width,
        height=height,
        num_images_per_prompt=num_samples
    ).images


gr.Interface(
    fn=generate,
    inputs=[
        gr.Text(label="Prompt"),
        gr.Text("", label="Negative Prompt"),
        gr.Number(7, label="Number inference steps"),
        gr.Number(3, label="Guidance scale"),
        gr.Number(512, label="Width"),
        gr.Number(512, label="Height"),
        gr.Number(1, label="# images"),
    ],
    outputs=gr.Gallery(),
).launch()