import gradio as gr import spaces import torch from diffusers import DiffusionPipeline model_name = 'UnfilteredAI/NSFW-gen-v2' pipe = DiffusionPipeline.from_pretrained( model_name, torch_dtype=torch.float16 ) pipe.to('cuda') def build_embeddings(enhanced_prompt, negative_prompt=None): max_length = pipe.tokenizer.model_max_length input_ids = pipe.tokenizer(enhanced_prompt, return_tensors="pt").input_ids input_ids = input_ids.to("cuda") negative_ids = pipe.tokenizer( negative_prompt or "", truncation=False, padding="max_length", max_length=input_ids.shape[-1], return_tensors="pt" ).input_ids negative_ids = negative_ids.to("cuda") concat_embeds = [] neg_embeds = [] for i in range(0, input_ids.shape[-1], max_length): concat_embeds.append(pipe.text_encoder(input_ids[:, i: i + max_length])[0]) neg_embeds.append(pipe.text_encoder(negative_ids[:, i: i + max_length])[0]) prompt_embeds = torch.cat(concat_embeds, dim=1) negative_prompt_embeds = torch.cat(neg_embeds, dim=1) return prompt_embeds, negative_prompt_embeds @spaces.GPU def generate(prompt, negative_prompt, num_inference_steps, guidance_scale, width, height, num_samples): prompt_embeds, neg_prompt_embeds = build_embeddings(prompt, negative_prompt) return pipe( prompt_embeds=prompt_embeds, negative_prompt_embeds=neg_prompt_embeds, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, width=width, height=height, num_images_per_prompt=num_samples ).images gr.Interface( fn=generate, inputs=[ gr.Text(label="Prompt"), gr.Text("", label="Negative Prompt"), gr.Number(7, label="Number inference steps"), gr.Number(3, label="Guidance scale"), gr.Number(512, label="Width"), gr.Number(512, label="Height"), gr.Number(1, label="# images"), ], outputs=gr.Gallery(), ).launch()