Spaces:
Sleeping
Sleeping
File size: 22,296 Bytes
15d3a03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Langchain Processing of Meta 10K 2023\n",
"\n",
"- Google Doc with [instructions](https://docs.google.com/forms/d/e/1FAIpQLSfRHORtHFiPUGCiYNt2NfapWtgUQWbv5V75kUPwUAkx20r9Eg/viewform)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1. Setup"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import nest_asyncio\n",
"\n",
"nest_asyncio.apply()\n",
"\n",
"import logging\n",
"import sys\n",
"import os\n",
"from dotenv import find_dotenv, load_dotenv\n",
"\n",
"load_dotenv(find_dotenv())"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"DEFAULT_QUESTION1 = \"What was the total value of 'Cash and cash equivalents' as of December 31, 2023?\"\n",
"DEFAULT_QUESTION2 = \"Who are Meta's 'Directors' (i.e., members of the Board of Directors)?\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2. Loading Document"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"147"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_community.document_loaders import PyMuPDFLoader\n",
"loader = PyMuPDFLoader(\n",
" \"../data/meta-10k-2023.pdf\",\n",
")\n",
"\n",
"# from langchain_community.document_loaders import UnstructuredPDFLoader\n",
"# loader = UnstructuredPDFLoader(\n",
"# file_path=\"../data/meta-10k-2023.pdf\",\n",
"# mode=\"elements\"\n",
"# )\n",
"\n",
"documents = loader.load()\n",
"len(documents)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'source': '../data/meta-10k-2023.pdf',\n",
" 'file_path': '../data/meta-10k-2023.pdf',\n",
" 'page': 0,\n",
" 'total_pages': 147,\n",
" 'format': 'PDF 1.4',\n",
" 'title': '0001326801-24-000012',\n",
" 'author': 'EDGAR® Online LLC, a subsidiary of OTC Markets Group',\n",
" 'subject': 'Form 10-K filed on 2024-02-02 for the period ending 2023-12-31',\n",
" 'keywords': '0001326801-24-000012; ; 10-K',\n",
" 'creator': 'EDGAR Filing HTML Converter',\n",
" 'producer': 'EDGRpdf Service w/ EO.Pdf 22.0.40.0',\n",
" 'creationDate': \"D:20240202060356-05'00'\",\n",
" 'modDate': \"D:20240202060413-05'00'\",\n",
" 'trapped': '',\n",
" 'encryption': 'Standard V2 R3 128-bit RC4'}"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"documents[0].metadata"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 3. Transforming Data"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"621"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"\n",
"text_splitter = RecursiveCharacterTextSplitter(\n",
" chunk_size = 1024,\n",
" chunk_overlap = 64\n",
")\n",
"\n",
"docs = text_splitter.split_documents(documents)\n",
"len(docs)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 4. Embedding & Vector Storage"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"from langchain_openai import ChatOpenAI\n",
"chat_model = ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0.0)\n",
"\n",
"# from llama_index.llms.ollama import Ollama\n",
"# chat_model = Ollama(model=\"llama3\", request_timeout=30.0)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"from langchain_openai import OpenAIEmbeddings\n",
"embeddings = OpenAIEmbeddings(\n",
" model=\"text-embedding-3-small\"\n",
")\n",
"\n",
"# from langchain_voyageai import VoyageAIEmbeddings\n",
"# EMBEDDING_MODEL = \"voyage-2\" # Alternative: \"voyage-lite-02-instruct\"\n",
"# embeddings = VoyageAIEmbeddings(model=EMBEDDING_MODEL, batch_size=12)\n"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"from langchain.vectorstores import Qdrant\n",
"\n",
"qdrant_vectorstore = Qdrant.from_documents(\n",
" docs,\n",
" embeddings,\n",
" path=\"../data\",\n",
" # location=\":memory:\",\n",
" collection_name=\"meta10k\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"]"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"qdrant_retriever = qdrant_vectorstore.as_retriever()"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"from langchain.retrievers.multi_query import MultiQueryRetriever\n",
"\n",
"mquery_retriever = MultiQueryRetriever.from_llm(\n",
" retriever=qdrant_retriever, llm=chat_model\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 4. LCEL\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"RAG_PROMPT = \"\"\"\n",
"CONTEXT:\n",
"{context}\n",
"\n",
"QUERY:\n",
"{question}\n",
"\n",
"You should only respond to user's query if the context is related to the query. If not, please reply \"I don't know\".\n",
"\"\"\"\n",
"\n",
"rag_prompt = ChatPromptTemplate.from_template(RAG_PROMPT)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"from operator import itemgetter\n",
"from langchain.schema.output_parser import StrOutputParser\n",
"from langchain.schema.runnable import RunnablePassthrough\n",
"\n",
"retrieval_augmented_qa_chain = (\n",
" # INVOKE CHAIN WITH: {\"question\" : \"<<SOME USER QUESTION>>\"}\n",
" # \"question\" : populated by getting the value of the \"question\" key\n",
" # \"context\" : populated by getting the value of the \"question\" key and chaining it into the base_retriever\n",
" {\"context\": itemgetter(\"question\") | mquery_retriever, \"question\": itemgetter(\"question\")}\n",
" # \"context\" : is assigned to a RunnablePassthrough object (will not be called or considered in the next step)\n",
" # by getting the value of the \"context\" key from the previous step\n",
" | RunnablePassthrough.assign(context=itemgetter(\"context\"))\n",
" # \"response\" : the \"context\" and \"question\" values are used to format our prompt object and then piped\n",
" # into the LLM and stored in a key called \"response\"\n",
" # \"context\" : populated by getting the value of the \"context\" key from the previous step\n",
" | {\"response\": rag_prompt | chat_model, \"context\": itemgetter(\"context\")}\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Testing with basic RAG"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The total value of 'Cash and cash equivalents' as of December 31, 2023, was $65.40 billion.\n"
]
}
],
"source": [
"response1 = retrieval_augmented_qa_chain.invoke({\"question\": DEFAULT_QUESTION1})\n",
"print(response1[\"response\"].content)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The Directors of Meta Platforms, Inc. mentioned in the document are:\n",
"- Robert M. Kimmitt\n",
"- Sheryl K. Sandberg\n",
"- Tracey T. Travis\n",
"- Tony Xu\n"
]
}
],
"source": [
"response2 = retrieval_augmented_qa_chain.invoke({\"question\": DEFAULT_QUESTION2})\n",
"print(response2[\"response\"].content)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The Directors mentioned in the context are Robert M. Kimmitt, Sheryl K. Sandberg, Tracey T. Travis, Tony Xu, Mark Zuckerberg, Susan Li, Aaron Anderson, Peggy Alford, Marc L. Andreessen, Andrew W. Houston, Nancy Killefer.\n"
]
}
],
"source": [
"response2 = retrieval_augmented_qa_chain.invoke(\n",
" {\"question\": \"Who are the 'Directors' (i.e., members of the Board of Directors)?\"})\n",
"print(response2[\"response\"].content)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Semantic Chunking"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"from langchain_experimental.text_splitter import SemanticChunker\n",
"\n",
"semantic_chunker = SemanticChunker(\n",
" OpenAIEmbeddings(model=\"text-embedding-3-large\"), \n",
" breakpoint_threshold_type=\"percentile\"\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"147"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(documents)"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Document(page_content='UNITED STATES\\nSECURITIES AND EXCHANGE COMMISSION\\nWashington, D.C.\\xa020549\\n__________________________\\nFORM 10-K\\n__________________________\\n(Mark One)\\n☒\\xa0\\xa0\\xa0\\xa0ANNUAL REPORT PURSUANT TO SECTION 13 OR 15(d)\\xa0OF THE SECURITIES EXCHANGE ACT OF 1934\\nFor the fiscal year ended December\\xa031, 2023\\nor\\n☐\\xa0\\xa0\\xa0\\xa0TRANSITION REPORT PURSUANT TO SECTION 13 OR 15(d)\\xa0OF THE SECURITIES EXCHANGE ACT OF 1934\\nFor the transition period from\\xa0\\xa0\\xa0\\xa0\\xa0\\xa0\\xa0\\xa0\\xa0\\xa0\\xa0\\xa0to\\xa0\\xa0\\xa0\\xa0\\xa0\\xa0\\xa0\\xa0\\xa0\\xa0\\xa0\\xa0\\nCommission File Number:\\xa0001-35551\\n__________________________\\nMeta Platforms, Inc.\\n(Exact name of registrant as specified in its charter)\\n__________________________\\nDelaware\\n20-1665019\\n(State or other jurisdiction of incorporation or organization)\\n(I.R.S. Employer Identification Number)\\n1 Meta Way, Menlo Park, California 94025\\n(Address of principal executive offices and Zip Code)\\n(650)\\xa0543-4800\\n(Registrant\\'s telephone number, including area code)\\n__________________________\\nSecurities registered pursuant to Section 12(b) of the Act:\\nTitle of each class\\nTrading symbol(s)\\nName of each exchange on which registered\\nClass A Common Stock, $0.000006 par value\\nMETA\\nThe Nasdaq Stock Market LLC\\nSecurities registered pursuant to Section 12(g) of the Act: None\\nIndicate by check mark if the registrant is a well-known seasoned issuer, as defined in Rule 405 of the Securities Act.\\xa0\\xa0\\xa0\\xa0Yes\\xa0\\xa0☒\\xa0\\xa0No\\xa0\\xa0 ☐\\nIndicate by check mark if the registrant is not required to file reports pursuant to Section 13 or Section 15(d) of the Act.\\xa0\\xa0\\xa0\\xa0Yes \\xa0☐\\xa0No\\xa0 ☒\\nIndicate by check mark whether the registrant\\xa0(1)\\xa0has filed all reports required to be filed by Section\\xa013 or 15(d) of the Securities Exchange Act of 1934 (Exchange Act) during the preceding\\n12\\xa0months (or for such shorter period that the registrant was required to file such reports), and\\xa0(2)\\xa0has been subject to such filing requirements for the past 90\\xa0days.\\xa0\\xa0\\xa0\\xa0Yes\\xa0\\xa0☒\\xa0\\xa0\\xa0\\xa0No\\xa0\\xa0☐\\nIndicate by check mark whether the registrant has submitted electronically every Interactive Data File required to be submitted pursuant to Rule 405 of Regulation S-T (§\\xa0232.405 of this chapter)\\nduring the preceding 12 months (or for such shorter period that the registrant was required to submit such files).\\xa0\\xa0\\xa0\\xa0Yes\\xa0\\xa0☒\\xa0\\xa0\\xa0\\xa0No\\xa0\\xa0☐\\nIndicate by check mark whether the registrant is a large accelerated filer, an accelerated filer, a non-accelerated filer, a smaller reporting company, or an emerging growth company. See the definitions\\nof \"large accelerated filer,\" \"accelerated filer,\" \"smaller reporting company,\" and \"emerging growth company\" in Rule 12b-2 of the Exchange Act.\\nLarge accelerated filer\\n☒\\nAccelerated\\xa0filer\\n☐\\nNon-accelerated filer\\n☐\\nSmaller\\xa0reporting\\xa0company\\n☐\\nEmerging growth company\\n☐\\nIf an emerging growth company, indicate by check mark if the registrant has elected not to use the extended transition period for complying with any new or revised financial accounting standards\\nprovided pursuant to Section 13(a) of the Exchange Act. ☐\\nIndicate by check mark whether the registrant has filed a report on and attestation to its management\\'s assessment of the effectiveness of its internal control over financial reporting under Section\\n404(b) of the Sarbanes-Oxley Act (15 U.S.C. 7262(b)) by the registered public accounting firm that prepared or issued its audit report. ☒\\nIf securities are registered pursuant to Section 12(b) of the Act, indicate by check mark whether the financial statements of the registrant included in the filing reflect the correction of an error to\\npreviously issued financial statements. ☐\\nIndicate by check mark whether any of those error corrections are restatements that required a recovery analysis of incentive-based compensation received by any of the registrant’s executive officers\\nduring the relevant recovery period pursuant to §240.10D-1(b). ☐\\nIndicate by check mark whether the registrant is a shell company (as defined in Rule 12b-2 of the Exchange Act).\\xa0\\xa0\\xa0\\xa0Yes\\xa0\\xa0☐\\xa0\\xa0\\xa0\\xa0No\\xa0\\xa0 ☒\\nThe aggregate market value of the voting and non-voting stock held by non-affiliates of the registrant as of June\\xa030, 2023, the last business day of the registrant\\'s most recently completed second fiscal\\nquarter, was $637\\xa0billion based upon the closing price reported for such date on the Nasdaq Global Select Market. On January\\xa026, 2024, the registrant had 2,200,048,907 shares of Class\\xa0A common\\nstock and 349,356,199 shares of Class B common stock outstanding.\\n', metadata={'source': '../data/meta-10k-2023.pdf', 'file_path': '../data/meta-10k-2023.pdf', 'page': 0, 'total_pages': 147, 'format': 'PDF 1.4', 'title': '0001326801-24-000012', 'author': 'EDGAR® Online LLC, a subsidiary of OTC Markets Group', 'subject': 'Form 10-K filed on 2024-02-02 for the period ending 2023-12-31', 'keywords': '0001326801-24-000012; ; 10-K', 'creator': 'EDGAR Filing HTML Converter', 'producer': 'EDGRpdf Service w/ EO.Pdf 22.0.40.0', 'creationDate': \"D:20240202060356-05'00'\", 'modDate': \"D:20240202060413-05'00'\", 'trapped': '', 'encryption': 'Standard V2 R3 128-bit RC4'})"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"documents[0]"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
"semantic_chunks = semantic_chunker.create_documents([d.page_content for d in documents])"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"346"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(semantic_chunks)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Creating a RAG Pipeline using Semantic Chunks"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [],
"source": [
"semantic_chunk_vectorstore = Qdrant.from_documents(\n",
" semantic_chunks,\n",
" embeddings,\n",
" path=\"../data/semantic-chunks\",\n",
" # location=\":memory:\",\n",
" collection_name=\"meta10k-semantic\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"semantic_chunk_vectorstore"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [],
"source": [
"semantic_chunk_retriever = semantic_chunk_vectorstore.as_retriever()"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [],
"source": [
"from langchain.retrievers.multi_query import MultiQueryRetriever\n",
"\n",
"semantic_mquery_retriever = MultiQueryRetriever.from_llm(\n",
" retriever=semantic_chunk_retriever, \n",
" llm=chat_model\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [],
"source": [
"semantic_retrieval_augmented_qa_chain = (\n",
" # INVOKE CHAIN WITH: {\"question\" : \"<<SOME USER QUESTION>>\"}\n",
" # \"question\" : populated by getting the value of the \"question\" key\n",
" # \"context\" : populated by getting the value of the \"question\" key and chaining it into the base_retriever\n",
" {\"context\": itemgetter(\"question\") | semantic_mquery_retriever, \"question\": itemgetter(\"question\")}\n",
" # \"context\" : is assigned to a RunnablePassthrough object (will not be called or considered in the next step)\n",
" # by getting the value of the \"context\" key from the previous step\n",
" | RunnablePassthrough.assign(context=itemgetter(\"context\"))\n",
" # \"response\" : the \"context\" and \"question\" values are used to format our prompt object and then piped\n",
" # into the LLM and stored in a key called \"response\"\n",
" # \"context\" : populated by getting the value of the \"context\" key from the previous step\n",
" | {\"response\": rag_prompt | chat_model, \"context\": itemgetter(\"context\")}\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"langchain_core.runnables.base.RunnableSequence"
]
},
"execution_count": 36,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"type(semantic_retrieval_augmented_qa_chain)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Testing with Semantic Chunk RAG"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The total value of 'Cash and cash equivalents' as of December 31, 2023, was $41.862 billion.\n"
]
}
],
"source": [
"semantic_response1 = semantic_retrieval_augmented_qa_chain.invoke({\"question\": DEFAULT_QUESTION1})\n",
"print(semantic_response1[\"response\"].content)"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The Directors of Meta, as mentioned in the provided documents, include:\n",
"- Andrew W. Houston\n",
"- Nancy Killefer\n",
"- Robert M. Kimmitt\n",
"- Sheryl K. Sandberg\n",
"- Tracey T. Travis\n",
"- Tony Xu\n"
]
}
],
"source": [
"semantic_response2 = semantic_retrieval_augmented_qa_chain.invoke({\"question\": DEFAULT_QUESTION2})\n",
"print(semantic_response2[\"response\"].content)"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The members of the Board of Directors mentioned in the provided documents are:\n",
"- Andrew W. Houston\n",
"- Nancy Killefer\n",
"- Robert M. Kimmitt\n",
"- Sheryl K. Sandberg\n",
"- Tracey T. Travis\n",
"- Tony Xu\n",
"- Mark Zuckerberg\n",
"- Susan Li\n",
"- Aaron Anderson\n",
"- Peggy Alford\n",
"- Marc L. Andreessen\n"
]
}
],
"source": [
"response2 = semantic_retrieval_augmented_qa_chain.invoke(\n",
" {\"question\": \"Who are the 'Directors' (i.e., members of the Board of Directors)?\"})\n",
"print(response2[\"response\"].content)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "llmops",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.8"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|