import chainlit as cl import logging import sys _logger = logging.getLogger("lang-chat") from langchain_core.prompts import ChatPromptTemplate from langchain_core.vectorstores import VectorStore from langchain_core.runnables.base import RunnableSequence from globals import ( DEFAULT_QUESTION1, DEFAULT_QUESTION2, gpt35_model, gpt4_model ) from semantic import ( SemanticRAGChainFactory ) _semantic_rag_chain: RunnableSequence = None @cl.on_message async def main(message: cl.Message): content = "" try: response = _semantic_rag_chain.invoke({"question": message.content}) content += response["response"].content except Exception as e: print(f"chat error: {e}: {vars(_semantic_rag_chain)}") # Send a response back to the user await cl.Message( content=f"{content}", ).send() @cl.on_chat_start async def start(): print("==> starting ...") global _semantic_rag_chain _semantic_rag_chain = SemanticRAGChainFactory.get_semantic_rag_chain() # await cl.Avatar( # name="Chatbot", # url="https://cdn-icons-png.flaticon.com/512/8649/8649595.png" # ).send() # await cl.Avatar( # name="User", # url="https://media.architecturaldigest.com/photos/5f241de2c850b2a36b415024/master/w_1600%2Cc_limit/Luke-logo.png" # ).send() print("\tsending message back: ready!!!") content = "" # if _semantic_rag_chain is not None: # try: # response1 = _semantic_rag_chain.invoke({"question": DEFAULT_QUESTION1}) # response2 = _semantic_rag_chain.invoke({"question": DEFAULT_QUESTION2}) # content = ( # f"**Question**: {DEFAULT_QUESTION1}\n\n" # f"{response1['response'].content}\n\n" # f"**Question**: {DEFAULT_QUESTION2}\n\n" # f"{response2['response'].content}\n\n" # ) # except Exception as e: # _logger.error(f"init error: {e}") cl.user_session.set("message_history", [{"role": "system", "content": "You are a helpful assistant. "}]) await cl.Message( content=content + "\nHow can I help you with Meta's 2023 10K?" ).send() print(f"{20 * '*'}")