phoen1x commited on
Commit
931f95f
1 Parent(s): 8947bf4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +225 -74
app.py CHANGED
@@ -1,22 +1,158 @@
1
- from huggingface_hub import InferenceClient
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  import gradio as gr
 
 
 
 
 
 
 
 
 
 
 
3
 
4
- client = InferenceClient(
5
- "mistralai/Mixtral-8x7B-Instruct-v0.1"
6
- )
7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
9
  def format_prompt(message, history):
10
- prompt = "<s>"
11
- for user_prompt, bot_response in history:
12
- prompt += f"[INST] {user_prompt} [/INST]"
13
- prompt += f" {bot_response}</s> "
14
- prompt += f"[INST] {message} [/INST]"
15
- return prompt
16
-
17
- def generate(
18
- prompt, history, system_prompt, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,
19
- ):
20
  temperature = float(temperature)
21
  if temperature < 1e-2:
22
  temperature = 1e-2
@@ -40,64 +176,79 @@ def generate(
40
  yield output
41
  return output
42
 
 
 
 
43
 
44
- additional_inputs=[
45
- gr.Textbox(
46
- label="System Prompt",
47
- max_lines=1,
48
- interactive=True,
49
- ),
50
- gr.Slider(
51
- label="Temperature",
52
- value=0.9,
53
- minimum=0.0,
54
- maximum=1.0,
55
- step=0.05,
56
- interactive=True,
57
- info="Higher values produce more diverse outputs",
58
- ),
59
- gr.Slider(
60
- label="Max new tokens",
61
- value=256,
62
- minimum=0,
63
- maximum=1048,
64
- step=64,
65
- interactive=True,
66
- info="The maximum numbers of new tokens",
67
- ),
68
- gr.Slider(
69
- label="Top-p (nucleus sampling)",
70
- value=0.90,
71
- minimum=0.0,
72
- maximum=1,
73
- step=0.05,
74
- interactive=True,
75
- info="Higher values sample more low-probability tokens",
76
- ),
77
- gr.Slider(
78
- label="Repetition penalty",
79
- value=1.2,
80
- minimum=1.0,
81
- maximum=2.0,
82
- step=0.05,
83
- interactive=True,
84
- info="Penalize repeated tokens",
85
- )
86
- ]
87
-
88
- examples=[["I'm planning a vacation to Japan. Can you suggest a one-week itinerary including must-visit places and local cuisines to try?", None, None, None, None, None, ],
89
- ["Can you write a short story about a time-traveling detective who solves historical mysteries?", None, None, None, None, None,],
90
- ["I'm trying to learn French. Can you provide some common phrases that would be useful for a beginner, along with their pronunciations?", None, None, None, None, None,],
91
- ["I have chicken, rice, and bell peppers in my kitchen. Can you suggest an easy recipe I can make with these ingredients?", None, None, None, None, None,],
92
- ["Can you explain how the QuickSort algorithm works and provide a Python implementation?", None, None, None, None, None,],
93
- ["What are some unique features of Rust that make it stand out compared to other systems programming languages like C++?", None, None, None, None, None,],
94
- ]
95
-
96
- gr.ChatInterface(
97
- fn=generate,
98
- chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
99
- additional_inputs=additional_inputs,
100
- title="Mixtral 46.7B",
101
- examples=examples,
102
- concurrency_limit=20,
103
- ).launch(show_api= True)
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # from huggingface_hub import InferenceClient
2
+ # import gradio as gr
3
+
4
+ # client = InferenceClient(
5
+ # "mistralai/Mixtral-8x7B-Instruct-v0.1"
6
+ # )
7
+
8
+
9
+ # def format_prompt(message, history):
10
+ # prompt = "<s>"
11
+ # for user_prompt, bot_response in history:
12
+ # prompt += f"[INST] {user_prompt} [/INST]"
13
+ # prompt += f" {bot_response}</s> "
14
+ # prompt += f"[INST] {message} [/INST]"
15
+ # return prompt
16
+
17
+ # def generate(
18
+ # prompt, history, system_prompt, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,
19
+ # ):
20
+ # temperature = float(temperature)
21
+ # if temperature < 1e-2:
22
+ # temperature = 1e-2
23
+ # top_p = float(top_p)
24
+
25
+ # generate_kwargs = dict(
26
+ # temperature=temperature,
27
+ # max_new_tokens=max_new_tokens,
28
+ # top_p=top_p,
29
+ # repetition_penalty=repetition_penalty,
30
+ # do_sample=True,
31
+ # seed=42,
32
+ # )
33
+
34
+ # formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
35
+ # stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
36
+ # output = ""
37
+
38
+ # for response in stream:
39
+ # output += response.token.text
40
+ # yield output
41
+ # return output
42
+
43
+
44
+ # additional_inputs=[
45
+ # gr.Textbox(
46
+ # label="System Prompt",
47
+ # max_lines=1,
48
+ # interactive=True,
49
+ # ),
50
+ # gr.Slider(
51
+ # label="Temperature",
52
+ # value=0.9,
53
+ # minimum=0.0,
54
+ # maximum=1.0,
55
+ # step=0.05,
56
+ # interactive=True,
57
+ # info="Higher values produce more diverse outputs",
58
+ # ),
59
+ # gr.Slider(
60
+ # label="Max new tokens",
61
+ # value=256,
62
+ # minimum=0,
63
+ # maximum=1048,
64
+ # step=64,
65
+ # interactive=True,
66
+ # info="The maximum numbers of new tokens",
67
+ # ),
68
+ # gr.Slider(
69
+ # label="Top-p (nucleus sampling)",
70
+ # value=0.90,
71
+ # minimum=0.0,
72
+ # maximum=1,
73
+ # step=0.05,
74
+ # interactive=True,
75
+ # info="Higher values sample more low-probability tokens",
76
+ # ),
77
+ # gr.Slider(
78
+ # label="Repetition penalty",
79
+ # value=1.2,
80
+ # minimum=1.0,
81
+ # maximum=2.0,
82
+ # step=0.05,
83
+ # interactive=True,
84
+ # info="Penalize repeated tokens",
85
+ # )
86
+ # ]
87
+
88
+ # examples=[["I'm planning a vacation to Japan. Can you suggest a one-week itinerary including must-visit places and local cuisines to try?", None, None, None, None, None, ],
89
+ # ["Can you write a short story about a time-traveling detective who solves historical mysteries?", None, None, None, None, None,],
90
+ # ["I'm trying to learn French. Can you provide some common phrases that would be useful for a beginner, along with their pronunciations?", None, None, None, None, None,],
91
+ # ["I have chicken, rice, and bell peppers in my kitchen. Can you suggest an easy recipe I can make with these ingredients?", None, None, None, None, None,],
92
+ # ["Can you explain how the QuickSort algorithm works and provide a Python implementation?", None, None, None, None, None,],
93
+ # ["What are some unique features of Rust that make it stand out compared to other systems programming languages like C++?", None, None, None, None, None,],
94
+ # ]
95
+
96
+ # gr.ChatInterface(
97
+ # fn=generate,
98
+ # chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
99
+ # additional_inputs=additional_inputs,
100
+ # title="Mixtral 46.7B",
101
+ # examples=examples,
102
+ # concurrency_limit=20,
103
+ # ).launch(show_api= True)
104
+
105
+
106
+ import os
107
  import gradio as gr
108
+ from PyPDF2 import PdfReader
109
+ from langchain.text_splitter import CharacterTextSplitter
110
+ from langchain.embeddings import HuggingFaceBgeEmbeddings
111
+ from langchain.vectorstores import FAISS
112
+ from langchain.chat_models import ChatOpenAI
113
+ from langchain.memory import ConversationBufferMemory
114
+ from langchain.chains import ConversationalRetrievalChain
115
+ from huggingface_hub import InferenceClient
116
+
117
+ # Set the Hugging Face Hub API token
118
+ os.environ["HUGGINGFACEHUB_API_TOKEN"] = st.secrets['huggingface_token']
119
 
120
+ # Initialize the InferenceClient
121
+ client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
 
122
 
123
+ def get_pdf_text(pdf_docs):
124
+ text = ""
125
+ for pdf in pdf_docs:
126
+ pdf_reader = PdfReader(pdf)
127
+ for page in pdf_reader.pages:
128
+ text += page.extract_text()
129
+ return text
130
+
131
+ def get_text_chunks(text):
132
+ text_splitter = CharacterTextSplitter(
133
+ separator="\n", chunk_size=1500, chunk_overlap=300, length_function=len
134
+ )
135
+ chunks = text_splitter.split_text(text)
136
+ return chunks
137
+
138
+ def get_vectorstore(text_chunks):
139
+ model = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
140
+ encode_kwargs = {"normalize_embeddings": True}
141
+ embeddings = HuggingFaceBgeEmbeddings(
142
+ model_name=model, encode_kwargs=encode_kwargs, model_kwargs={"device": "cpu"}
143
+ )
144
+ vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
145
+ return vectorstore
146
 
147
  def format_prompt(message, history):
148
+ prompt = "<s>"
149
+ for user_prompt, bot_response in history:
150
+ prompt += f"[INST] {user_prompt} [/INST]"
151
+ prompt += f" {bot_response}</s> "
152
+ prompt += f"[INST] {message} [/INST]"
153
+ return prompt
154
+
155
+ def generate(prompt, history, system_prompt, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0):
 
 
156
  temperature = float(temperature)
157
  if temperature < 1e-2:
158
  temperature = 1e-2
 
176
  yield output
177
  return output
178
 
179
+ def main(pdf_docs):
180
+ # get pdf text
181
+ raw_text = get_pdf_text(pdf_docs)
182
 
183
+ # get the text chunks
184
+ text_chunks = get_text_chunks(raw_text)
185
+
186
+ # create vector store
187
+ vectorstore = get_vectorstore(text_chunks)
188
+
189
+ # create conversation chain
190
+ conversation_chain = get_conversation_chain(vectorstore)
191
+
192
+ additional_inputs=[
193
+ gr.Textbox(
194
+ label="System Prompt",
195
+ max_lines=1,
196
+ interactive=True,
197
+ ),
198
+ gr.Slider(
199
+ label="Temperature",
200
+ value=0.9,
201
+ minimum=0.0,
202
+ maximum=1.0,
203
+ step=0.05,
204
+ interactive=True,
205
+ info="Higher values produce more diverse outputs",
206
+ ),
207
+ gr.Slider(
208
+ label="Max new tokens",
209
+ value=256,
210
+ minimum=0,
211
+ maximum=1048,
212
+ step=64,
213
+ interactive=True,
214
+ info="The maximum numbers of new tokens",
215
+ ),
216
+ gr.Slider(
217
+ label="Top-p (nucleus sampling)",
218
+ value=0.90,
219
+ minimum=0.0,
220
+ maximum=1,
221
+ step=0.05,
222
+ interactive=True,
223
+ info="Higher values sample more low-probability tokens",
224
+ ),
225
+ gr.Slider(
226
+ label="Repetition penalty",
227
+ value=1.2,
228
+ minimum=1.0,
229
+ maximum=2.0,
230
+ step=0.05,
231
+ interactive=True,
232
+ info="Penalize repeated tokens",
233
+ )
234
+ ]
235
+
236
+ examples=[["I'm planning a vacation to Japan. Can you suggest a one-week itinerary including must-visit places and local cuisines to try?", None, None, None, None, None, ],
237
+ ["Can you write a short story about a time-traveling detective who solves historical mysteries?", None, None, None, None, None,],
238
+ ["I'm trying to learn French. Can you provide some common phrases that would be useful for a beginner, along with their pronunciations?", None, None, None, None, None,],
239
+ ["I have chicken, rice, and bell peppers in my kitchen. Can you suggest an easy recipe I can make with these ingredients?", None, None, None, None, None,],
240
+ ["Can you explain how the QuickSort algorithm works and provide a Python implementation?", None, None, None, None, None,],
241
+ ["What are some unique features of Rust that make it stand out compared to other systems programming languages like C++?", None, None, None, None, None,],
242
+ ]
243
+
244
+ gr.ChatInterface(
245
+ fn=generate,
246
+ chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
247
+ additional_inputs=additional_inputs,
248
+ title="Mixtral 46.7B",
249
+ examples=examples,
250
+ concurrency_limit=20,
251
+ ).launch(show_api= True)
252
+
253
+ if __name__ == "__main__":
254
+ main([])