Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,22 +1,158 @@
|
|
1 |
-
from huggingface_hub import InferenceClient
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
)
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
def format_prompt(message, history):
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
def generate(
|
18 |
-
prompt, history, system_prompt, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,
|
19 |
-
):
|
20 |
temperature = float(temperature)
|
21 |
if temperature < 1e-2:
|
22 |
temperature = 1e-2
|
@@ -40,64 +176,79 @@ def generate(
|
|
40 |
yield output
|
41 |
return output
|
42 |
|
|
|
|
|
|
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# from huggingface_hub import InferenceClient
|
2 |
+
# import gradio as gr
|
3 |
+
|
4 |
+
# client = InferenceClient(
|
5 |
+
# "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
6 |
+
# )
|
7 |
+
|
8 |
+
|
9 |
+
# def format_prompt(message, history):
|
10 |
+
# prompt = "<s>"
|
11 |
+
# for user_prompt, bot_response in history:
|
12 |
+
# prompt += f"[INST] {user_prompt} [/INST]"
|
13 |
+
# prompt += f" {bot_response}</s> "
|
14 |
+
# prompt += f"[INST] {message} [/INST]"
|
15 |
+
# return prompt
|
16 |
+
|
17 |
+
# def generate(
|
18 |
+
# prompt, history, system_prompt, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,
|
19 |
+
# ):
|
20 |
+
# temperature = float(temperature)
|
21 |
+
# if temperature < 1e-2:
|
22 |
+
# temperature = 1e-2
|
23 |
+
# top_p = float(top_p)
|
24 |
+
|
25 |
+
# generate_kwargs = dict(
|
26 |
+
# temperature=temperature,
|
27 |
+
# max_new_tokens=max_new_tokens,
|
28 |
+
# top_p=top_p,
|
29 |
+
# repetition_penalty=repetition_penalty,
|
30 |
+
# do_sample=True,
|
31 |
+
# seed=42,
|
32 |
+
# )
|
33 |
+
|
34 |
+
# formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
|
35 |
+
# stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
36 |
+
# output = ""
|
37 |
+
|
38 |
+
# for response in stream:
|
39 |
+
# output += response.token.text
|
40 |
+
# yield output
|
41 |
+
# return output
|
42 |
+
|
43 |
+
|
44 |
+
# additional_inputs=[
|
45 |
+
# gr.Textbox(
|
46 |
+
# label="System Prompt",
|
47 |
+
# max_lines=1,
|
48 |
+
# interactive=True,
|
49 |
+
# ),
|
50 |
+
# gr.Slider(
|
51 |
+
# label="Temperature",
|
52 |
+
# value=0.9,
|
53 |
+
# minimum=0.0,
|
54 |
+
# maximum=1.0,
|
55 |
+
# step=0.05,
|
56 |
+
# interactive=True,
|
57 |
+
# info="Higher values produce more diverse outputs",
|
58 |
+
# ),
|
59 |
+
# gr.Slider(
|
60 |
+
# label="Max new tokens",
|
61 |
+
# value=256,
|
62 |
+
# minimum=0,
|
63 |
+
# maximum=1048,
|
64 |
+
# step=64,
|
65 |
+
# interactive=True,
|
66 |
+
# info="The maximum numbers of new tokens",
|
67 |
+
# ),
|
68 |
+
# gr.Slider(
|
69 |
+
# label="Top-p (nucleus sampling)",
|
70 |
+
# value=0.90,
|
71 |
+
# minimum=0.0,
|
72 |
+
# maximum=1,
|
73 |
+
# step=0.05,
|
74 |
+
# interactive=True,
|
75 |
+
# info="Higher values sample more low-probability tokens",
|
76 |
+
# ),
|
77 |
+
# gr.Slider(
|
78 |
+
# label="Repetition penalty",
|
79 |
+
# value=1.2,
|
80 |
+
# minimum=1.0,
|
81 |
+
# maximum=2.0,
|
82 |
+
# step=0.05,
|
83 |
+
# interactive=True,
|
84 |
+
# info="Penalize repeated tokens",
|
85 |
+
# )
|
86 |
+
# ]
|
87 |
+
|
88 |
+
# examples=[["I'm planning a vacation to Japan. Can you suggest a one-week itinerary including must-visit places and local cuisines to try?", None, None, None, None, None, ],
|
89 |
+
# ["Can you write a short story about a time-traveling detective who solves historical mysteries?", None, None, None, None, None,],
|
90 |
+
# ["I'm trying to learn French. Can you provide some common phrases that would be useful for a beginner, along with their pronunciations?", None, None, None, None, None,],
|
91 |
+
# ["I have chicken, rice, and bell peppers in my kitchen. Can you suggest an easy recipe I can make with these ingredients?", None, None, None, None, None,],
|
92 |
+
# ["Can you explain how the QuickSort algorithm works and provide a Python implementation?", None, None, None, None, None,],
|
93 |
+
# ["What are some unique features of Rust that make it stand out compared to other systems programming languages like C++?", None, None, None, None, None,],
|
94 |
+
# ]
|
95 |
+
|
96 |
+
# gr.ChatInterface(
|
97 |
+
# fn=generate,
|
98 |
+
# chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
|
99 |
+
# additional_inputs=additional_inputs,
|
100 |
+
# title="Mixtral 46.7B",
|
101 |
+
# examples=examples,
|
102 |
+
# concurrency_limit=20,
|
103 |
+
# ).launch(show_api= True)
|
104 |
+
|
105 |
+
|
106 |
+
import os
|
107 |
import gradio as gr
|
108 |
+
from PyPDF2 import PdfReader
|
109 |
+
from langchain.text_splitter import CharacterTextSplitter
|
110 |
+
from langchain.embeddings import HuggingFaceBgeEmbeddings
|
111 |
+
from langchain.vectorstores import FAISS
|
112 |
+
from langchain.chat_models import ChatOpenAI
|
113 |
+
from langchain.memory import ConversationBufferMemory
|
114 |
+
from langchain.chains import ConversationalRetrievalChain
|
115 |
+
from huggingface_hub import InferenceClient
|
116 |
+
|
117 |
+
# Set the Hugging Face Hub API token
|
118 |
+
os.environ["HUGGINGFACEHUB_API_TOKEN"] = st.secrets['huggingface_token']
|
119 |
|
120 |
+
# Initialize the InferenceClient
|
121 |
+
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
|
|
122 |
|
123 |
+
def get_pdf_text(pdf_docs):
|
124 |
+
text = ""
|
125 |
+
for pdf in pdf_docs:
|
126 |
+
pdf_reader = PdfReader(pdf)
|
127 |
+
for page in pdf_reader.pages:
|
128 |
+
text += page.extract_text()
|
129 |
+
return text
|
130 |
+
|
131 |
+
def get_text_chunks(text):
|
132 |
+
text_splitter = CharacterTextSplitter(
|
133 |
+
separator="\n", chunk_size=1500, chunk_overlap=300, length_function=len
|
134 |
+
)
|
135 |
+
chunks = text_splitter.split_text(text)
|
136 |
+
return chunks
|
137 |
+
|
138 |
+
def get_vectorstore(text_chunks):
|
139 |
+
model = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
|
140 |
+
encode_kwargs = {"normalize_embeddings": True}
|
141 |
+
embeddings = HuggingFaceBgeEmbeddings(
|
142 |
+
model_name=model, encode_kwargs=encode_kwargs, model_kwargs={"device": "cpu"}
|
143 |
+
)
|
144 |
+
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
|
145 |
+
return vectorstore
|
146 |
|
147 |
def format_prompt(message, history):
|
148 |
+
prompt = "<s>"
|
149 |
+
for user_prompt, bot_response in history:
|
150 |
+
prompt += f"[INST] {user_prompt} [/INST]"
|
151 |
+
prompt += f" {bot_response}</s> "
|
152 |
+
prompt += f"[INST] {message} [/INST]"
|
153 |
+
return prompt
|
154 |
+
|
155 |
+
def generate(prompt, history, system_prompt, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0):
|
|
|
|
|
156 |
temperature = float(temperature)
|
157 |
if temperature < 1e-2:
|
158 |
temperature = 1e-2
|
|
|
176 |
yield output
|
177 |
return output
|
178 |
|
179 |
+
def main(pdf_docs):
|
180 |
+
# get pdf text
|
181 |
+
raw_text = get_pdf_text(pdf_docs)
|
182 |
|
183 |
+
# get the text chunks
|
184 |
+
text_chunks = get_text_chunks(raw_text)
|
185 |
+
|
186 |
+
# create vector store
|
187 |
+
vectorstore = get_vectorstore(text_chunks)
|
188 |
+
|
189 |
+
# create conversation chain
|
190 |
+
conversation_chain = get_conversation_chain(vectorstore)
|
191 |
+
|
192 |
+
additional_inputs=[
|
193 |
+
gr.Textbox(
|
194 |
+
label="System Prompt",
|
195 |
+
max_lines=1,
|
196 |
+
interactive=True,
|
197 |
+
),
|
198 |
+
gr.Slider(
|
199 |
+
label="Temperature",
|
200 |
+
value=0.9,
|
201 |
+
minimum=0.0,
|
202 |
+
maximum=1.0,
|
203 |
+
step=0.05,
|
204 |
+
interactive=True,
|
205 |
+
info="Higher values produce more diverse outputs",
|
206 |
+
),
|
207 |
+
gr.Slider(
|
208 |
+
label="Max new tokens",
|
209 |
+
value=256,
|
210 |
+
minimum=0,
|
211 |
+
maximum=1048,
|
212 |
+
step=64,
|
213 |
+
interactive=True,
|
214 |
+
info="The maximum numbers of new tokens",
|
215 |
+
),
|
216 |
+
gr.Slider(
|
217 |
+
label="Top-p (nucleus sampling)",
|
218 |
+
value=0.90,
|
219 |
+
minimum=0.0,
|
220 |
+
maximum=1,
|
221 |
+
step=0.05,
|
222 |
+
interactive=True,
|
223 |
+
info="Higher values sample more low-probability tokens",
|
224 |
+
),
|
225 |
+
gr.Slider(
|
226 |
+
label="Repetition penalty",
|
227 |
+
value=1.2,
|
228 |
+
minimum=1.0,
|
229 |
+
maximum=2.0,
|
230 |
+
step=0.05,
|
231 |
+
interactive=True,
|
232 |
+
info="Penalize repeated tokens",
|
233 |
+
)
|
234 |
+
]
|
235 |
+
|
236 |
+
examples=[["I'm planning a vacation to Japan. Can you suggest a one-week itinerary including must-visit places and local cuisines to try?", None, None, None, None, None, ],
|
237 |
+
["Can you write a short story about a time-traveling detective who solves historical mysteries?", None, None, None, None, None,],
|
238 |
+
["I'm trying to learn French. Can you provide some common phrases that would be useful for a beginner, along with their pronunciations?", None, None, None, None, None,],
|
239 |
+
["I have chicken, rice, and bell peppers in my kitchen. Can you suggest an easy recipe I can make with these ingredients?", None, None, None, None, None,],
|
240 |
+
["Can you explain how the QuickSort algorithm works and provide a Python implementation?", None, None, None, None, None,],
|
241 |
+
["What are some unique features of Rust that make it stand out compared to other systems programming languages like C++?", None, None, None, None, None,],
|
242 |
+
]
|
243 |
+
|
244 |
+
gr.ChatInterface(
|
245 |
+
fn=generate,
|
246 |
+
chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
|
247 |
+
additional_inputs=additional_inputs,
|
248 |
+
title="Mixtral 46.7B",
|
249 |
+
examples=examples,
|
250 |
+
concurrency_limit=20,
|
251 |
+
).launch(show_api= True)
|
252 |
+
|
253 |
+
if __name__ == "__main__":
|
254 |
+
main([])
|