# from huggingface_hub import InferenceClient # import gradio as gr # client = InferenceClient( # "mistralai/Mixtral-8x7B-Instruct-v0.1" # ) # def format_prompt(message, history): # prompt = "" # for user_prompt, bot_response in history: # prompt += f"[INST] {user_prompt} [/INST]" # prompt += f" {bot_response} " # prompt += f"[INST] {message} [/INST]" # return prompt # def generate( # prompt, history, system_prompt, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0, # ): # temperature = float(temperature) # if temperature < 1e-2: # temperature = 1e-2 # top_p = float(top_p) # generate_kwargs = dict( # temperature=temperature, # max_new_tokens=max_new_tokens, # top_p=top_p, # repetition_penalty=repetition_penalty, # do_sample=True, # seed=42, # ) # formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history) # stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) # output = "" # for response in stream: # output += response.token.text # yield output # return output # additional_inputs=[ # gr.Textbox( # label="System Prompt", # max_lines=1, # interactive=True, # ), # gr.Slider( # label="Temperature", # value=0.9, # minimum=0.0, # maximum=1.0, # step=0.05, # interactive=True, # info="Higher values produce more diverse outputs", # ), # gr.Slider( # label="Max new tokens", # value=256, # minimum=0, # maximum=1048, # step=64, # interactive=True, # info="The maximum numbers of new tokens", # ), # gr.Slider( # label="Top-p (nucleus sampling)", # value=0.90, # minimum=0.0, # maximum=1, # step=0.05, # interactive=True, # info="Higher values sample more low-probability tokens", # ), # gr.Slider( # label="Repetition penalty", # value=1.2, # minimum=1.0, # maximum=2.0, # step=0.05, # interactive=True, # info="Penalize repeated tokens", # ) # ] # examples=[["I'm planning a vacation to Japan. Can you suggest a one-week itinerary including must-visit places and local cuisines to try?", None, None, None, None, None, ], # ["Can you write a short story about a time-traveling detective who solves historical mysteries?", None, None, None, None, None,], # ["I'm trying to learn French. Can you provide some common phrases that would be useful for a beginner, along with their pronunciations?", None, None, None, None, None,], # ["I have chicken, rice, and bell peppers in my kitchen. Can you suggest an easy recipe I can make with these ingredients?", None, None, None, None, None,], # ["Can you explain how the QuickSort algorithm works and provide a Python implementation?", None, None, None, None, None,], # ["What are some unique features of Rust that make it stand out compared to other systems programming languages like C++?", None, None, None, None, None,], # ] # gr.ChatInterface( # fn=generate, # chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"), # additional_inputs=additional_inputs, # title="Mixtral 46.7B", # examples=examples, # concurrency_limit=20, # ).launch(show_api= True) import os import gradio as gr from PyPDF2 import PdfReader from langchain.text_splitter import CharacterTextSplitter from langchain.embeddings import HuggingFaceBgeEmbeddings from langchain.vectorstores import FAISS from langchain.chat_models import ChatOpenAI from langchain.memory import ConversationBufferMemory from langchain.chains import ConversationalRetrievalChain from huggingface_hub import InferenceClient # Set the Hugging Face Hub API token os.environ["HUGGINGFACEHUB_API_TOKEN"] = st.secrets['huggingface_token'] # Initialize the InferenceClient client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") def get_pdf_text(pdf_docs): text = "" for pdf in pdf_docs: pdf_reader = PdfReader(pdf) for page in pdf_reader.pages: text += page.extract_text() return text def get_text_chunks(text): text_splitter = CharacterTextSplitter( separator="\n", chunk_size=1500, chunk_overlap=300, length_function=len ) chunks = text_splitter.split_text(text) return chunks def get_vectorstore(text_chunks): model = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2" encode_kwargs = {"normalize_embeddings": True} embeddings = HuggingFaceBgeEmbeddings( model_name=model, encode_kwargs=encode_kwargs, model_kwargs={"device": "cpu"} ) vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) return vectorstore def format_prompt(message, history): prompt = "" for user_prompt, bot_response in history: prompt += f"[INST] {user_prompt} [/INST]" prompt += f" {bot_response} " prompt += f"[INST] {message} [/INST]" return prompt def generate(prompt, history, system_prompt, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0): temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42, ) formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history) stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: output += response.token.text yield output return output def main(pdf_docs): # get pdf text raw_text = get_pdf_text(pdf_docs) # get the text chunks text_chunks = get_text_chunks(raw_text) # create vector store vectorstore = get_vectorstore(text_chunks) # create conversation chain conversation_chain = get_conversation_chain(vectorstore) additional_inputs=[ gr.Textbox( label="System Prompt", max_lines=1, interactive=True, ), gr.Slider( label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs", ), gr.Slider( label="Max new tokens", value=256, minimum=0, maximum=1048, step=64, interactive=True, info="The maximum numbers of new tokens", ), gr.Slider( label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens", ), gr.Slider( label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens", ) ] examples=[["I'm planning a vacation to Japan. Can you suggest a one-week itinerary including must-visit places and local cuisines to try?", None, None, None, None, None, ], ["Can you write a short story about a time-traveling detective who solves historical mysteries?", None, None, None, None, None,], ["I'm trying to learn French. Can you provide some common phrases that would be useful for a beginner, along with their pronunciations?", None, None, None, None, None,], ["I have chicken, rice, and bell peppers in my kitchen. Can you suggest an easy recipe I can make with these ingredients?", None, None, None, None, None,], ["Can you explain how the QuickSort algorithm works and provide a Python implementation?", None, None, None, None, None,], ["What are some unique features of Rust that make it stand out compared to other systems programming languages like C++?", None, None, None, None, None,], ] gr.ChatInterface( fn=generate, chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"), additional_inputs=additional_inputs, title="Mixtral 46.7B", examples=examples, concurrency_limit=20, ).launch(show_api= True) if __name__ == "__main__": main([])