Spaces:
Running
Running
import gradio as gr | |
import PIL.Image as Image | |
from ultralytics import YOLO | |
pose = YOLO("models/pose.pt") | |
def predict_image(image, conf_threshold, iou_threshold): | |
results = pose.predict( | |
image, conf=conf_threshold, iou=iou_threshold, stream=True) | |
for r in results: | |
im_array = r.plot(labels=True, boxes=True) | |
yield Image.fromarray(im_array[..., ::-1]) | |
iface = gr.Interface( | |
fn=predict_image, | |
inputs=[ | |
gr.Video(label="Upload Video"), | |
gr.Slider(minimum=0, maximum=1, value=0.25, | |
label="Confidence threshold"), | |
gr.Slider(minimum=0, maximum=1, value=0.7, label="IoU threshold"), | |
], | |
outputs=gr.Image(type="numpy", label="Result"), | |
title="Human Pose", | |
description="Limbs in all of the right places. Videos may take a LOT of time since this is running on the basic CPU tier of HuggingFace. Feel free to check out the image space for a much faster demo!" | |
) | |
if __name__ == "__main__": | |
iface.launch() | |