Spaces:
Runtime error
Runtime error
import os | |
import gradio as gr | |
from fastai.learner import load_learner | |
from fastai.vision.core import PILImage | |
from huggingface_hub import hf_hub_download | |
learner = load_learner(hf_hub_download("pinkpekoe/lesson2-bear-classifier", "export.pkl")) | |
def predict_bear_type(img_path): | |
img = PILImage.create(img_path) | |
pred, pred_idx, probs = learner.predict(img) | |
probabilities = [ | |
f"{probs[i]:.02f}*" if i == pred_idx else f"{probs[i]:.02f}" | |
for i in range(len(probs)) | |
] | |
return f"Prediction: {pred}; Probabilities: " + ", ".join(probabilities) | |
title = "Pet Breed Classifier" | |
description = "A pet breed classifier trained on the Oxford Pets dataset with fastai. Created as a demo for Gradio and HuggingFace Spaces." | |
article = "<p style='text-align: center'><a href='https://tmabraham.github.io/blog/gradio_hf_spaces_tutorial' target='_blank'>Blog post</a></p>" | |
examples = ["black.jpeg", "brown.jpeg", "teddy.jpeg"] | |
interpretation = "default" | |
enable_queue = True | |
iface = gr.Interface( | |
fn=predict_bear_type, | |
inputs="image", | |
outputs="text", | |
title=title, | |
description=description, | |
article=article, | |
examples=examples, | |
interpretation=interpretation, | |
) | |
iface.launch(enable_queue=enable_queue) | |