Spaces:
Runtime error
Runtime error
readding update functionality
Browse files
app.py
CHANGED
@@ -9,9 +9,11 @@ from huggingface_hub import HfApi, hf_hub_download, snapshot_download
|
|
9 |
from huggingface_hub.repocard import metadata_load
|
10 |
from apscheduler.schedulers.background import BackgroundScheduler
|
11 |
|
|
|
12 |
from tqdm.contrib.concurrent import thread_map
|
13 |
|
14 |
-
from utils import
|
|
|
15 |
|
16 |
DATASET_REPO_URL = "https://huggingface.co/datasets/pkalkman/drlc-leaderboard-data"
|
17 |
DATASET_REPO_ID = "pkalkman/drlc-leaderboard-data"
|
@@ -24,6 +26,153 @@ api = HfApi(token=HF_TOKEN)
|
|
24 |
with open('envs.json', 'r') as f:
|
25 |
rl_envs = json.load(f)
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
def download_leaderboard_dataset():
|
29 |
# Download the dataset from the Hugging Face Hub
|
|
|
9 |
from huggingface_hub.repocard import metadata_load
|
10 |
from apscheduler.schedulers.background import BackgroundScheduler
|
11 |
|
12 |
+
|
13 |
from tqdm.contrib.concurrent import thread_map
|
14 |
|
15 |
+
from utils import make_clickable_model
|
16 |
+
from utils import make_clickable_user
|
17 |
|
18 |
DATASET_REPO_URL = "https://huggingface.co/datasets/pkalkman/drlc-leaderboard-data"
|
19 |
DATASET_REPO_ID = "pkalkman/drlc-leaderboard-data"
|
|
|
26 |
with open('envs.json', 'r') as f:
|
27 |
rl_envs = json.load(f)
|
28 |
|
29 |
+
def get_metadata(model_id):
|
30 |
+
try:
|
31 |
+
readme_path = hf_hub_download(model_id, filename="README.md", etag_timeout=180)
|
32 |
+
return metadata_load(readme_path)
|
33 |
+
except requests.exceptions.HTTPError:
|
34 |
+
# 404 README.md not found
|
35 |
+
return None
|
36 |
+
|
37 |
+
def parse_metrics_accuracy(meta):
|
38 |
+
if "model-index" not in meta:
|
39 |
+
return None
|
40 |
+
result = meta["model-index"][0]["results"]
|
41 |
+
metrics = result[0]["metrics"]
|
42 |
+
accuracy = metrics[0]["value"]
|
43 |
+
return accuracy
|
44 |
+
|
45 |
+
# We keep the worst case episode
|
46 |
+
def parse_rewards(accuracy):
|
47 |
+
default_std = -1000
|
48 |
+
default_reward=-1000
|
49 |
+
if accuracy != None:
|
50 |
+
accuracy = str(accuracy)
|
51 |
+
parsed = accuracy.split('+/-')
|
52 |
+
if len(parsed)>1:
|
53 |
+
mean_reward = float(parsed[0].strip())
|
54 |
+
std_reward = float(parsed[1].strip())
|
55 |
+
elif len(parsed)==1: #only mean reward
|
56 |
+
mean_reward = float(parsed[0].strip())
|
57 |
+
std_reward = float(0)
|
58 |
+
else:
|
59 |
+
mean_reward = float(default_std)
|
60 |
+
std_reward = float(default_reward)
|
61 |
+
|
62 |
+
else:
|
63 |
+
mean_reward = float(default_std)
|
64 |
+
std_reward = float(default_reward)
|
65 |
+
return mean_reward, std_reward
|
66 |
+
|
67 |
+
|
68 |
+
def get_model_ids(rl_env):
|
69 |
+
api = HfApi()
|
70 |
+
models = api.list_models(filter=rl_env)
|
71 |
+
model_ids = [x.modelId for x in models]
|
72 |
+
return model_ids
|
73 |
+
|
74 |
+
# Parralelized version
|
75 |
+
def update_leaderboard_dataset_parallel(rl_env, path):
|
76 |
+
# Get model ids associated with rl_env
|
77 |
+
model_ids = get_model_ids(rl_env)
|
78 |
+
|
79 |
+
def process_model(model_id):
|
80 |
+
meta = get_metadata(model_id)
|
81 |
+
#LOADED_MODEL_METADATA[model_id] = meta if meta is not None else ''
|
82 |
+
if meta is None:
|
83 |
+
return None
|
84 |
+
user_id = model_id.split('/')[0]
|
85 |
+
row = {}
|
86 |
+
row["User"] = user_id
|
87 |
+
row["Model"] = model_id
|
88 |
+
accuracy = parse_metrics_accuracy(meta)
|
89 |
+
mean_reward, std_reward = parse_rewards(accuracy)
|
90 |
+
mean_reward = mean_reward if not pd.isna(mean_reward) else 0
|
91 |
+
std_reward = std_reward if not pd.isna(std_reward) else 0
|
92 |
+
row["Results"] = mean_reward - std_reward
|
93 |
+
row["Mean Reward"] = mean_reward
|
94 |
+
row["Std Reward"] = std_reward
|
95 |
+
return row
|
96 |
+
|
97 |
+
data = list(thread_map(process_model, model_ids, desc="Processing models"))
|
98 |
+
|
99 |
+
# Filter out None results (models with no metadata)
|
100 |
+
data = [row for row in data if row is not None]
|
101 |
+
|
102 |
+
ranked_dataframe = rank_dataframe(pd.DataFrame.from_records(data))
|
103 |
+
new_history = ranked_dataframe
|
104 |
+
file_path = path + "/" + rl_env + ".csv"
|
105 |
+
new_history.to_csv(file_path, index=False)
|
106 |
+
|
107 |
+
return ranked_dataframe
|
108 |
+
|
109 |
+
|
110 |
+
def update_leaderboard_dataset(rl_env, path):
|
111 |
+
# Get model ids associated with rl_env
|
112 |
+
model_ids = get_model_ids(rl_env)
|
113 |
+
data = []
|
114 |
+
for model_id in model_ids:
|
115 |
+
"""
|
116 |
+
readme_path = hf_hub_download(model_id, filename="README.md")
|
117 |
+
meta = metadata_load(readme_path)
|
118 |
+
"""
|
119 |
+
meta = get_metadata(model_id)
|
120 |
+
#LOADED_MODEL_METADATA[model_id] = meta if meta is not None else ''
|
121 |
+
if meta is None:
|
122 |
+
continue
|
123 |
+
user_id = model_id.split('/')[0]
|
124 |
+
row = {}
|
125 |
+
row["User"] = make_clickable_user(user_id)
|
126 |
+
row["Model"] = make_clickable_model(model_id)
|
127 |
+
accuracy = parse_metrics_accuracy(meta)
|
128 |
+
mean_reward, std_reward = parse_rewards(accuracy)
|
129 |
+
mean_reward = mean_reward if not pd.isna(mean_reward) else 0
|
130 |
+
std_reward = std_reward if not pd.isna(std_reward) else 0
|
131 |
+
row["Results"] = mean_reward - std_reward
|
132 |
+
row["Mean Reward"] = mean_reward
|
133 |
+
row["Std Reward"] = std_reward
|
134 |
+
data.append(row)
|
135 |
+
|
136 |
+
ranked_dataframe = rank_dataframe(pd.DataFrame.from_records(data))
|
137 |
+
new_history = ranked_dataframe
|
138 |
+
file_path = path + "/" + rl_env + ".csv"
|
139 |
+
new_history.to_csv(file_path, index=False)
|
140 |
+
|
141 |
+
return ranked_dataframe
|
142 |
+
|
143 |
+
|
144 |
+
def get_data_no_html(rl_env, path) -> pd.DataFrame:
|
145 |
+
"""
|
146 |
+
Get data from rl_env
|
147 |
+
:return: data as a pandas DataFrame
|
148 |
+
"""
|
149 |
+
csv_path = path + "/" + rl_env + ".csv"
|
150 |
+
data = pd.read_csv(csv_path)
|
151 |
+
|
152 |
+
return data
|
153 |
+
|
154 |
+
|
155 |
+
def rank_dataframe(dataframe):
|
156 |
+
dataframe = dataframe.sort_values(by=['Results', 'User', 'Model'], ascending=False)
|
157 |
+
if not 'Ranking' in dataframe.columns:
|
158 |
+
dataframe.insert(0, 'Ranking', [i for i in range(1,len(dataframe)+1)])
|
159 |
+
else:
|
160 |
+
dataframe['Ranking'] = [i for i in range(1,len(dataframe)+1)]
|
161 |
+
return dataframe
|
162 |
+
|
163 |
+
|
164 |
+
def run_update_dataset():
|
165 |
+
path_ = download_leaderboard_dataset()
|
166 |
+
for i in range(0, len(rl_envs)):
|
167 |
+
rl_env = rl_envs[i]
|
168 |
+
update_leaderboard_dataset_parallel(rl_env["rl_env"], path_)
|
169 |
+
|
170 |
+
api.upload_folder(
|
171 |
+
folder_path=path_,
|
172 |
+
repo_id="pkalkman/drlc-leaderboard-data",
|
173 |
+
repo_type="dataset",
|
174 |
+
commit_message="Update dataset")
|
175 |
+
|
176 |
|
177 |
def download_leaderboard_dataset():
|
178 |
# Download the dataset from the Hugging Face Hub
|