Paula Leonova
commited on
Commit
·
66a86a3
1
Parent(s):
94c16ba
Remove main call to speed up rendering
Browse files
app.py
CHANGED
@@ -16,76 +16,76 @@ ex_text, ex_license, ex_labels = examples_load()
|
|
16 |
ex_long_text = example_long_text_load()
|
17 |
|
18 |
|
19 |
-
if __name__ == '__main__':
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
|
|
16 |
ex_long_text = example_long_text_load()
|
17 |
|
18 |
|
19 |
+
# if __name__ == '__main__':
|
20 |
+
st.header("Summzarization & Multi-label Classification for Long Text")
|
21 |
+
st.write("This app summarizes and then classifies your long text with multiple labels (_Please allow for a minimum of 30secs to load results_).")
|
22 |
+
st.write("Inputs: User enters their own custom text and labels")
|
23 |
+
st.write("Outputs: A summary of the text, pre and post summary label likelihood percentages and a downloadable csv of the results")
|
24 |
+
|
25 |
+
with st.form(key='my_form'):
|
26 |
+
example_text = ex_long_text #ex_text
|
27 |
+
display_text = "[Excerpt from Project Gutenberg: Frankenstein]\n" + example_text + "\n\n" + ex_license
|
28 |
+
text_input = st.text_area("Input any text you want to summaryize & classify here (keep in mind very long text will take a while to process):", display_text)
|
29 |
+
|
30 |
+
if text_input == display_text:
|
31 |
+
text_input = example_text
|
32 |
+
|
33 |
+
labels = st.text_input('Possible labels (comma-separated):',ex_labels, max_chars=1000)
|
34 |
+
labels = list(set([x.strip() for x in labels.strip().split(',') if len(x.strip()) > 0]))
|
35 |
+
submit_button = st.form_submit_button(label='Submit')
|
36 |
+
|
37 |
+
if submit_button:
|
38 |
+
if len(labels) == 0:
|
39 |
+
st.write('Enter some text and at least one possible topic to see predictions.')
|
40 |
+
|
41 |
+
# For each body of text, create text chunks of a certain token size required for the transformer
|
42 |
+
nested_sentences = create_nest_sentences(document = text_input, token_max_length = 1024)
|
43 |
+
|
44 |
+
summary = []
|
45 |
+
st.markdown("### Text Chunk & Summaries")
|
46 |
+
st.markdown("Breaks up the original text into sections with complete sentences totaling \
|
47 |
+
less than 1024 tokens, a requirement for the summarizer.")
|
48 |
+
|
49 |
+
# For each chunk of sentences (within the token max), generate a summary
|
50 |
+
for n in range(0, len(nested_sentences)):
|
51 |
+
text_chunk = " ".join(map(str, nested_sentences[n]))
|
52 |
+
st.markdown(f"###### Chunk {n+1}/{len(nested_sentences)}" )
|
53 |
+
st.markdown(text_chunk)
|
54 |
+
|
55 |
+
chunk_summary = summarizer_gen(summarizer, sequence=text_chunk, maximum_tokens = 300, minimum_tokens = 20)
|
56 |
+
summary.append(chunk_summary)
|
57 |
+
st.markdown("###### Partial Summary")
|
58 |
+
st.markdown(chunk_summary)
|
59 |
+
# Combine all the summaries into a list and compress into one document, again
|
60 |
+
final_summary = " \n".join(list(summary))
|
61 |
+
|
62 |
+
# final_summary = summarizer_gen(summarizer, sequence=text_input, maximum_tokens = 30, minimum_tokens = 100)
|
63 |
+
st.markdown("### Combined Summary")
|
64 |
+
st.markdown(final_summary)
|
65 |
+
|
66 |
+
topics, scores = classifier_zero(classifier, sequence=final_summary, labels=labels, multi_class=True)
|
67 |
+
# st.markdown("### Top Label Predictions: Combined Summary")
|
68 |
+
# plot_result(topics[::-1][:], scores[::-1][:])
|
69 |
+
# st.markdown("### Download Data")
|
70 |
+
data = pd.DataFrame({'label': topics, 'scores_from_summary': scores})
|
71 |
+
# st.dataframe(data)
|
72 |
+
# coded_data = base64.b64encode(data.to_csv(index = False). encode ()).decode()
|
73 |
+
# st.markdown(
|
74 |
+
# f'<a href="data:file/csv;base64, {coded_data}" download = "data.csv">Download Data</a>',
|
75 |
+
# unsafe_allow_html = True
|
76 |
+
# )
|
77 |
+
|
78 |
+
st.markdown("### Top Label Predictions: Summary & Full Text")
|
79 |
+
topics_ex_text, scores_ex_text = classifier_zero(classifier, sequence=example_text, labels=labels, multi_class=True)
|
80 |
+
plot_dual_bar_chart(topics, scores, topics_ex_text, scores_ex_text)
|
81 |
+
|
82 |
+
data_ex_text = pd.DataFrame({'label': topics_ex_text, 'scores_from_full_text': scores_ex_text})
|
83 |
+
data2 = pd.merge(data, data_ex_text, on = ['label'])
|
84 |
+
st.markdown("### Data Table")
|
85 |
+
|
86 |
+
coded_data = base64.b64encode(data2.to_csv(index = False). encode ()).decode()
|
87 |
+
st.markdown(
|
88 |
+
f'<a href="data:file/csv;base64, {coded_data}" download = "data.csv">Click here to download the data</a>',
|
89 |
+
unsafe_allow_html = True
|
90 |
+
)
|
91 |
+
st.dataframe(data2)
|