File size: 20,733 Bytes
cf00b12
 
496ed17
cf00b12
0712e23
 
cf00b12
25d5fbb
798686c
 
cf00b12
 
 
25d5fbb
 
 
 
3929c07
 
0712e23
 
 
25d5fbb
0712e23
 
 
cf00b12
 
 
798686c
 
 
 
 
 
cf00b12
 
798686c
 
 
 
 
0712e23
 
 
 
 
 
cf00b12
0712e23
 
 
 
 
 
cf00b12
0712e23
 
 
 
cf00b12
0712e23
 
 
 
cf00b12
0712e23
 
 
 
 
cf00b12
0712e23
25d5fbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0712e23
25d5fbb
 
 
3929c07
25d5fbb
 
 
 
 
3929c07
 
 
25d5fbb
3929c07
cf00b12
3929c07
cf00b12
0712e23
 
25d5fbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0712e23
cf00b12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3929c07
 
cf00b12
acfa594
 
3929c07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf00b12
acfa594
3929c07
cf00b12
 
3929c07
acfa594
cf00b12
 
 
 
 
 
 
 
 
 
 
 
 
acfa594
 
3929c07
25d5fbb
cf00b12
25d5fbb
3929c07
cf00b12
25d5fbb
3929c07
 
25d5fbb
3929c07
 
25d5fbb
 
cf00b12
 
3929c07
 
25d5fbb
3929c07
 
 
 
cf00b12
acfa594
 
3929c07
cf00b12
3929c07
 
 
 
 
 
 
acfa594
 
 
3929c07
 
cf00b12
 
acfa594
3929c07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf00b12
 
 
acfa594
cf00b12
 
 
0712e23
 
 
 
cf00b12
 
 
 
 
 
0712e23
acfa594
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0712e23
acfa594
 
 
 
 
cf00b12
acfa594
 
3929c07
25d5fbb
0712e23
3929c07
0712e23
 
 
 
 
 
 
cf00b12
 
 
 
 
 
0712e23
 
 
cf00b12
 
 
 
0712e23
 
 
cf00b12
 
 
 
 
0712e23
 
 
 
 
cf00b12
 
 
acfa594
cf00b12
 
 
 
 
 
 
acfa594
cf00b12
acfa594
cf00b12
acfa594
 
 
 
 
cf00b12
acfa594
 
cf00b12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acfa594
 
 
cf00b12
 
 
 
acfa594
cf00b12
acfa594
cf00b12
 
 
 
 
 
 
3929c07
 
 
 
 
cf00b12
 
3929c07
 
 
 
0712e23
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
#https://discuss.huggingface.co/t/dynamical-flexible-output/18146/6
#https://github.com/gradio-app/gradio/issues/2066
import gradio as gr
#from transformers import AutoModelForCausalLM, AutoTokenizer
import pandas as pd
from datetime import datetime, timedelta, timezone
#import torch
from config import groq_token, groq_model, QUESTION_PROMPT, init_google_sheets_client, groq_model, default_model_name, user_names, google_sheets_name

#from config import  hugging_face_token, replicate_token
#import replicate
import gspread
from  groq import Client
import random, string, json, io
from googleapiclient.discovery import build
from googleapiclient.http import MediaFileUpload, MediaIoBaseDownload
from google.oauth2 import service_account # Import service_account module


# Initialize Google Sheets client
client = init_google_sheets_client()
sheet = client.open(google_sheets_name)
#sheet = client.open_by_key('1kA37sJps3nhki-s9S7J_mQtNoqoWOLvezV0HobHzQ4s') ID planilla chatbot test nuevo
stories_sheet = sheet.worksheet("Stories")
system_prompts_sheet = sheet.worksheet("System Prompts")

# Combine both model dictionaries
all_models = {**groq_model}

def randomize_key_order(aux):
    keys  = list(aux.keys())
    #Shuffle the list of keys
    random.shuffle(keys)
    #Create a new dictionary with shuffled keys
    return {key: aux[key] for key in keys}


alphabet = list(string.ascii_uppercase)

# Initialize GROQ client
groq_clinet = Client(api_key=groq_token)

# Load stories from Google Sheets
def load_stories():
    stories_data = stories_sheet.get_all_values()
    stories = [{"title": story[0], "story": story[1]} for story in stories_data if story[0] != "Title"]  # Skip header row
    return stories


# Load system prompts from Google Sheets
def load_system_prompts():
    system_prompts_data = system_prompts_sheet.get_all_values()
    system_prompts = [prompt[0] for prompt in system_prompts_data[1:]]  # Skip header row
    return system_prompts


# Load available stories and system prompts
stories = load_stories()
system_prompts = load_system_prompts()


# Initialize the selected model
selected_model = default_model_name
tokenizer, model = None, None


# Initialize the data list
data = []

# Chat history
chat_history = []
model_history = []

# Save all_answers to Google Drive
FILE_ID = '1PwEiBxpHo0jRc6T1HixyC99UnP9iawbr'


def save_answers(all_answers):
    # Credenciales de la cuenta de servicio (reemplaza con tus credenciales)
    SCOPES = ["https://spreadsheets.google.com/feeds", "https://www.googleapis.com/auth/drive"]
    SERVICE_ACCOUNT_FILE = 'polar-land-440713-c4-bbc8d89804d8.json'
    # Autentificación
    credentials = service_account.Credentials.from_service_account_file(SERVICE_ACCOUNT_FILE, scopes=SCOPES)
    service = build('drive', 'v3', credentials=credentials)

    # Obtener el archivo existente
    file = service.files().get(fileId=FILE_ID).execute()

    # Download the content using get_media instead of export_media
    request = service.files().get_media(fileId=FILE_ID)
    fh = io.BytesIO()
    downloader = MediaIoBaseDownload(fh, request)
    done = False
    while done is False:
        status, done = downloader.next_chunk()
        print("Download %d%%." % int(status.progress() * 100))

    # Cargar el contenido JSON
    content = fh.getvalue()
    if content:
        existing_data = json.loads(content)
    else:
        existing_data = {}

    # Convert sets to lists before serialization if they exist
    def convert_sets_to_lists(obj):
        if isinstance(obj, set):
            return list(obj)
        if isinstance(obj, dict):
            return {k: convert_sets_to_lists(v) for k, v in obj.items()}
        if isinstance(obj, list):
            return [convert_sets_to_lists(item) for item in obj]
        return obj

    existing_data = convert_sets_to_lists(existing_data)

    # Agregar los nuevos datos al arreglo
    if 'data' in existing_data:
        existing_data['data'].append(all_answers)
    else:
        existing_data['data'] = [all_answers]
    # Convertir los datos a formato JSON
    new_content = json.dumps(existing_data)

    # Create a temporary file to store the JSON data
    with open('temp_data.json', 'w') as temp_file: 
        temp_file.write(new_content)

    media = MediaFileUpload('temp_data.json', mimetype='application/json')  
    file = service.files().update(fileId=FILE_ID, 
                                   media_body=media, 
                                   fields='id').execute()
    print('Archivo actualizado correctamente: %s' % file.get('id'))



    #Function to save comment and score
def save_comment_score(score, comment, story_name, user_name, system_prompt, models):
    print("Saving comment and score...")
    print(chat_history)
    print(model_history)
    full_chat_history = ""

    # Create formatted chat history with roles
    #and model in model_history
    for message in chat_history:
        print(message['role'])
        if message['role'] == 'user':  # User message
            full_chat_history += f"User: {message['content']}\n"
        if message['role'] == 'assistant':  # Assistant message
            full_chat_history += f"Model:{model_history.pop(0)} Assistant: {message['content']}\n"

    timestamp = datetime.now(timezone.utc) - timedelta(hours=3)  # Adjust to GMT-3
    timestamp_str = timestamp.strftime("%Y-%m-%d %H:%M:%S")
    model_name = (' ').join(models)
    # Append data to local data storage
    print(full_chat_history)
    data.append([
        timestamp_str,
        user_name,
        model_name,
        system_prompt,
        story_name,
        full_chat_history,
        score,
        comment
    ])

    # Append data to Google Sheets
    try:
        user_sheet = client.open(google_sheets_name).worksheet(user_name)
    except gspread.exceptions.WorksheetNotFound:
        user_sheet = client.open(google_sheets_name).add_worksheet(title=user_name, rows="100", cols="20")

    user_sheet.append_row([timestamp_str, user_name, model_name, system_prompt, story_name, full_chat_history, score, comment])


    # Save all answers to Google Drive as a JSON file
    print(f"all answers...\n{all_answers}")
    save_answers(all_answers)

    #Append data and render the data table
    df = pd.DataFrame(data, columns=["Timestamp", "User Name", "Model Name", "System Prompt", "Story Name", "Chat History", "Score", "Comment"])
    return df[["Chat History", "Score", "Comment"]], gr.update(value="")  # Show only the required columns and clear the comment input box




# Function to handle interaction with model
def interact_groq(context, model_name):
   chat_completion = groq_clinet.chat.completions.create(
       messages=context,
       model=model_name,
       temperature=0.1,
       max_tokens=100,
   )
   #print(chat_completion)
   return chat_completion.choices[0].message.content


#i=[story_dropdown, model_dropdown, system_prompt_dropdown],
#o=[chatbot_output, chat_history_json, data_table, selected_story_textbox])
# Function to send selected story and initial message
def send_selected_story(title, model_name, system_prompt):
   global chat_history
   global selected_story
   global data  # Ensure data is reset
   data = []  # Reset data for new story
   selected_story = title
   for story in stories:
       if story["title"] == title:
           system_prompt = f"""
{system_prompt}
Here is the story:
---
{story['story']}
---
           """
           combined_message = system_prompt.strip()
           if combined_message:
               chat_history = []  # Reset chat history
               chat_history.append({"role": "system", "content": combined_message})
               chat_history.append({"role": "user", "content": QUESTION_PROMPT})

               response = interact_groq(chat_history, model_name)
               resp = {"role": "assistant", "content": response.strip()}
               return resp, chat_history, story["story"]
           else:
               print("Combined message is empty.")
       else:
           print("Story title does not match.")


#i=[story_dropdown, model_dropdown, system_prompt_dropdown],
#o=[chatbot_output, chat_history_json, data_table, selected_story_textbox])
#recibo varios respuestas las muestro nomas, agrego al contexto solo la que se
#story_dropdown, model_checkbox, system_prompt_dropdown]

def send_multiple_selected_story(title, models, system_prompt):
    global model_history
    global chatbot_answser_list
    global all_answers
    resp_list = []
    print(models)
    #iterate over words
    #shuffle_models = randomize_key_order(all_models)
    random.shuffle(models)
    print(f"models shuffled: {models}")
    for index, model in enumerate(models):
        resp, context, _ = send_selected_story(title, model, system_prompt)
        chatbot_answser_list[alphabet[index]] = {'response': resp, 'model': model}
        try:
             print(resp)
             resp_list.append(gr.Chatbot(value=[resp], visible=True, type='messages'))
        except gr.exceptions.Error:
             print(f"error for en modelo {model}")
    
    
    rest = [model for model in model_list if model not in models]
    for model in rest:
        try:
            resp_list.append(gr.Chatbot(type='messages', visible=False))
        except gr.exceptions.Error:
            print(f"error, else en modelo {model}")
    
    try:
        resp_list.insert(0, gr.Chatbot(value=context, type='messages'))
        #chat_history ya se hace en send_selected_story
    except gr.exceptions.Error:
        print(f"error en main output\n {context}")

    return resp_list

#inputs=[user_input, chatbot_main_output, model_checkbox, chat_radio, assistant_user_input, chatbot_resp[0],  chatbot_resp[1], chatbot_resp[2], chatbot_resp[3]],# interaction_count],

def remove_metadata(json_array):
    print(json_array)
    print(type(json_array))
    json_aux = []
    for json_obj in json_array:
        print(f'objeto{json_obj}')
        json_aux.append({'role':json_obj["role"], 'content':json_obj["content"]})
    return json_aux


# dont know the correct model beacuse it shuffles each time
#selected model it's only the index in radio input
def multiple_interact(query, models, selected_model, assistant_user_input): #, interaction_count)
    #print(f'chat_checkbox: {selected_model}')
    resp_list = []
    #print(model_history)
        
    if selected_model == "user_input":
        user_dialog = [{'response': {'role': 'assistant', 'content': assistant_user_input}, 'model': 'user_input'}]
        dialog = {
            "context":  remove_metadata(chat_history),
            "assistant": user_dialog + list(chatbot_answser_list.values()),
            "selected": "user_input",
            }
        chat_history.append({"role": "assistant", "content": assistant_user_input})
        chat_history.append({"role": "user", "content": query})
  
    else:
        dialog = {
            "context":  remove_metadata(chat_history),
            "assistant": list(chatbot_answser_list.values()),
            "selected": None,
            }
        
        #chatbot_answser_list
        #get the previous answer of the selected model
        for index, model in enumerate(models):
            if alphabet[index] == selected_model:
                selected_model_history = chatbot_answser_list[selected_model]['response']
                print(f"selected_model_history: {selected_model_history}")
                chat_history.append(selected_model_history)
                chat_history.append({"role": "user","content": query.strip()})
                #si es la correcta guardarla
                dialog["selected"] = chatbot_answser_list[selected_model]['model']
                break
    #APPE
    all_answers.append(dialog)
    #save to csv
    selected_model_history = {} #reset history 
    
    #creo que no precisa
    aux_history = remove_metadata(chat_history)
    #print(aux_history)
    

    #no es models es....
    random.shuffle(active_models)
    for index, model in enumerate(active_models):
        resp = interact_groq(aux_history, model)
        resp = {"role": "assistant", "content": resp.strip()}
        chatbot_answser_list[alphabet[index]] = {'response': resp, 'model': model}
        try:
             print(resp)
             resp_list.append(gr.Chatbot(value=[resp], visible=True, type='messages'))
        except gr.exceptions.Error:
             print(f"error for en modelo {model}")
    
    rest = [model for model in model_list if model not in active_models]
    for model in rest:
        try:
            resp_list.append(gr.Chatbot(type='messages', visible=False))
        except gr.exceptions.Error:
            print(f"error, else en modelo {model}")

    resp_list.insert(0, gr.Chatbot(value=aux_history, type='messages'))
    model_history.append(selected_model)
    print(model_history)

    return resp_list



# Function to load user guide from a file
def load_user_guide():
    with open('user_guide.txt', 'r') as file:
        return file.read()
  
def change_textbox(checkbox):
    if checkbox == "user_input":
         return  gr.Textbox(placeholder="Type your message here...", label="Assistant input", visible=True)
    else:
        return gr.Textbox(value="", visible=False)

def change_checkbox(checkbox):
    print(f'checkbox: {checkbox}')

    #luego cuando sean variables
    global active_models
    active_models = checkbox
    quant_models = len(checkbox)
    words = [alphabet[i] for i in range(quant_models)]
    checkbox = gr.Radio(label="Select Model to respond...", choices=words+["user_input"])
    #checkbox = gr.Radio(label="Select Model to respond...", choices=checkbox+["user_input"])
    return checkbox

def change_story(story_title, ret="gradio"):
    for story in stories:
          if story["title"] == story_title:
                if ret== "gradio":
                    return gr.Textbox(label="Selected Story", lines=10, interactive=False, value=story["story"])
                else: #"string"
                    return story["story"]
    return gr.Textbox(label="Error", lines=10, interactive=False, value="Story title does not match.")



    

chatbot_list = []
model_list = list(all_models.keys())
active_models = []
#chatbot_answer_list['model'] = "respuesta aqui"
chatbot_answser_list = {}
all_answers = [] #save all answers of all chatbots
# Create the chat interface using Gradio Blocks
active_models = []
with gr.Blocks() as demo:
    with gr.Tabs():
        with gr.TabItem("Chat"):
            gr.Markdown("# Demo Chatbot V3")

            gr.Markdown("## Context")
            with gr.Group():
               model_dropdown = gr.Dropdown(choices=list(all_models.keys()), label="Select Models", value=model_list[0])
               user_dropdown = gr.Dropdown(choices=user_names, label="Select User Name")
               initial_story = stories[0]["title"] if stories else None
               story_dropdown = gr.Dropdown(choices=[story["title"] for story in stories], label="Select Story", value=initial_story)
               system_prompt_dropdown = gr.Dropdown(choices=system_prompts, label="Select System Prompt", value=system_prompts[0])
               send_story_button = gr.Button("Send Story")

            gr.Markdown("## Chat")
            with gr.Group():
               selected_story_textbox = gr.Textbox(label="Selected Story", lines=10, interactive=False)
               chatbot_output = gr.Chatbot(label="Chat History", type='messages')
               chatbot_input = gr.Textbox(placeholder="Type your message here...", label="User Input")
               send_message_button = gr.Button("Send")

            gr.Markdown("## Evaluation")
            with gr.Group():
               score_input = gr.Slider(minimum=0, maximum=5, step=1, label="Score")
               comment_input = gr.Textbox(placeholder="Add a comment...", label="Comment")
               save_button = gr.Button("Save Score and Comment")
               data_table = gr.DataFrame(headers=["Chat History", "Score", "Comment"])
    
        with gr.TabItem("User Guide"):
            gr.Textbox(label="User Guide", value=load_user_guide(), lines=20)



        with gr.TabItem("Multiple Evaluation"):
            with gr.Group():
               #model_dropdown = gr.Dropdown(choices=list(all_models.keys()), label="Select Model", value=default_model_name)
               model_checkbox = gr.CheckboxGroup(choices=list(all_models.keys()), label="Select Model", value=None) #value=[default_model_name])
               user_dropdown = gr.Dropdown(choices=user_names, label="Select User Name")
               story_dropdown = gr.Dropdown(choices=[story["title"] for story in stories], label="Select Story", value=initial_story)
               system_prompt_dropdown = gr.Dropdown(choices=system_prompts, label="Select System Prompt", value=system_prompts[0])
               send_multiple_story_button = gr.Button("Send Story")

            gr.Markdown("## Chat")
            with gr.Group():
                selected_story_textbox = gr.Textbox(label="Selected Story", lines=10, interactive=False, value=change_story(initial_story, "string"))
                #aqui armar una ventana x cada modelo seleccionado
                chatbot_list.append(gr.Chatbot(label="Chat History", type='messages'))
                with gr.Row():
                    for i, model in enumerate(model_list):
                        label = f"Model {alphabet[i % len(alphabet)]}"
                        aux = gr.Chatbot(label=label, visible=False, type='messages')
                        chatbot_list.append(aux)   
                        
                user_input = gr.Textbox(placeholder="Type your message here...", label="User Input")
                #chat_radio = gr.Radio(choices=list(model_list)+["user_input"], label="Sent something to continue...", value=[model_list[0]])
                chat_radio = gr.Radio(label="Select Model to respond...")
                #elegir respuesta primero, luego enviar mensaje
                assistant_user_input = gr.Textbox(interactive=True, show_copy_button=True, visible=False)     
                send_multiple_message_button = gr.Button("Send")
            
            gr.Markdown("## Evaluation")
            with gr.Group():
                score_input = gr.Slider(minimum=0, maximum=5, step=1, label="Score")
                comment_input = gr.Textbox(placeholder="Add a comment...", label="Comment")
                save_button_multievaluation = gr.Button("Save Score and Comment")
                data_table = gr.DataFrame(headers=["Chat History", "Score", "Comment"])

      
    interaction_count = gr.Number(value=0, visible=False)
    selected_model_array = gr.List(value=None, visible=False)

   #input es las entradas a la funcion
   #output es las salidas de la funcion? puede ser lo que se creo si
   #send_story_button.click(fn=send_selected_story, inputs=[story_dropdown, model_dropdown, system_prompt_dropdown], outputs=[chatbot_output, chat_history_json, data_table, selected_story_textbox])
   #send_message_button.click(fn=interact, inputs=[chatbot_input, chat_history_json, interaction_count, model_dropdown], outputs=[chatbot_input, chatbot_output, chat_history_json, interaction_count])
   #save_button.click(fn=save_comment_score, inputs=[chatbot_output, score_input, comment_input, story_dropdown, user_dropdown, system_prompt_dropdown], outputs=[data_table, comment_input])

    chat_radio.change(fn=change_textbox, inputs=chat_radio, outputs=assistant_user_input)
    #al elegir modelo cambia el chat radio, setea los modelos elegidos
    model_checkbox.input(fn=change_checkbox, inputs=model_checkbox, outputs=chat_radio)
    story_dropdown.input(fn=change_story, inputs=[story_dropdown], outputs=selected_story_textbox)

    send_multiple_story_button.click(
       fn=send_multiple_selected_story,
       inputs=[story_dropdown, model_checkbox, system_prompt_dropdown],
       outputs=chatbot_list,
       )
    
   #Tengo que cambiar para que los modelos responan solo las respuestas y no todo el historial
   #preciso las historias previas de cada una
   #el modelo que se haya elegido
   #aqui mando a solicitar...
   #luego retorno:
   #en

    send_multiple_message_button.click(
       fn=multiple_interact,
       inputs=[user_input, model_checkbox, chat_radio, assistant_user_input],# interaction_count],
       outputs=chatbot_list,
       )

#quiza tenga que guardar una variable con los valores de los checkbox
    save_button_multievaluation.click(
        fn=save_comment_score,
        inputs=[score_input, comment_input, story_dropdown, user_dropdown, system_prompt_dropdown,  model_checkbox],
        outputs=[data_table, comment_input])

demo.launch()