File size: 3,078 Bytes
3370ff8
 
 
 
 
 
 
 
 
edbbf31
 
 
 
 
 
 
 
 
3370ff8
edbbf31
3370ff8
 
 
 
 
 
 
 
 
 
edbbf31
 
3370ff8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef25264
3370ff8
ef25264
 
 
 
 
3370ff8
ef25264
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3370ff8
ef25264
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
from matplotlib import pyplot as plt
import torch
import torch.nn.functional as F


from constants import COLORS
from utils import fig2img


def visualize_mask(mask, img, alpha=0.5):
    mask = mask.cpu().squeeze().numpy()
    img = img.cpu().squeeze().permute(1, 2, 0).numpy()
    plt.imshow(img)
    plt.imshow(mask, alpha=alpha)
    plt.axis("off")
    return fig2img(plt.gcf())


def visualize_prediction(
    pil_img, output_dict, threshold=0.7, id2label=None, display_mask=False, mask=None
):
    keep = output_dict["scores"] > threshold
    boxes = output_dict["boxes"][keep].tolist()
    scores = output_dict["scores"][keep].tolist()
    labels = output_dict["labels"][keep].tolist()
    if id2label is not None:
        labels = [id2label[x] for x in labels]

    fig, ax = plt.subplots(figsize=(12, 12))
    ax.imshow(pil_img)
    if display_mask:
        ax.imshow(mask, alpha=0.5)
    colors = COLORS * 100
    for score, (xmin, ymin, xmax, ymax), label, color in zip(
        scores, boxes, labels, colors
    ):
        ax.add_patch(
            plt.Rectangle(
                (xmin, ymin),
                xmax - xmin,
                ymax - ymin,
                fill=False,
                color=color,
                linewidth=2,
            )
        )
        ax.text(
            xmin,
            ymin,
            f"{label}: {score:0.2f}",
            fontsize=10,
            bbox=dict(facecolor="yellow", alpha=0.5),
        )
    ax.axis("off")
    return fig2img(fig)


def visualize_attention_map(pil_img, attention_map):
    # Get the attention map for the last layer
    attention_map = attention_map[-1].detach().cpu()
    
    # Get the number of heads
    n_heads = attention_map.shape[1]
    
    # Calculate the average attention weight for each head
    avg_attention_weight = torch.mean(attention_map, dim=1).squeeze()
    
    # Resize the attention map
    resized_attention_weight = F.interpolate(
        avg_attention_weight.unsqueeze(0).unsqueeze(0),
        size=pil_img.size[::-1],
        mode="bicubic",
    ).squeeze().numpy()
    
    # Create a grid of subplots
    fig, axes = plt.subplots(nrows=1, ncols=n_heads, figsize=(n_heads*4, 4))
    
    # Loop through the subplots and plot the attention for each head
    for i, ax in enumerate(axes.flat):
        ax.imshow(pil_img)
        ax.imshow(attention_map[0,i,:,:].squeeze(), alpha=0.7, cmap="viridis")
        ax.set_title(f"Head {i+1}")
        ax.axis("off")
    
    plt.tight_layout()
    
    return fig2img(fig)
    # attention_map = attention_map[-1].detach().cpu()
    # avg_attention_weight = torch.mean(attention_map, dim=1).squeeze()
    # avg_attention_weight_resized = (
    #     F.interpolate(
    #         avg_attention_weight.unsqueeze(0).unsqueeze(0),
    #         size=pil_img.size[::-1],
    #         mode="bicubic",
    #     )
    #     .squeeze()
    #     .numpy()
    # )

    # plt.imshow(pil_img)
    # plt.imshow(avg_attention_weight_resized, alpha=0.7, cmap="viridis")
    # plt.axis("off")
    # fig = plt.gcf()
    # return fig2img(fig)