vicellst-official / constants.py
polejowska's picture
Update constants.py
a46c0cf
COLORS = [
[0.000, 0.447, 0.741],
[0.850, 0.325, 0.098],
[0.929, 0.694, 0.125],
[0.494, 0.184, 0.556],
[0.466, 0.674, 0.188],
[0.301, 0.745, 0.933],
[0.351, 0.760, 0.903],
]
MODELS_DETAILS = {
"DETR-RESNET-50": """DetrForObjectDetection(
(model): DetrModel(
(backbone): DetrConvModel(
(conv_encoder): DetrConvEncoder(
(model): FeatureListNet(
(conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
(bn1): DetrFrozenBatchNorm2d()
(act1): ReLU(inplace=True)
(maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
(layer1): Sequential(
(0): Bottleneck(
(conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): DetrFrozenBatchNorm2d()
(act1): ReLU(inplace=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): DetrFrozenBatchNorm2d()
(drop_block): Identity()
(act2): ReLU(inplace=True)
(aa): Identity()
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): DetrFrozenBatchNorm2d()
(act3): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): DetrFrozenBatchNorm2d()
(act1): ReLU(inplace=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): DetrFrozenBatchNorm2d()
(drop_block): Identity()
(act2): ReLU(inplace=True)
(aa): Identity()
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): DetrFrozenBatchNorm2d()
(act3): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): DetrFrozenBatchNorm2d()
(act1): ReLU(inplace=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): DetrFrozenBatchNorm2d()
(drop_block): Identity()
(act2): ReLU(inplace=True)
(aa): Identity()
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): DetrFrozenBatchNorm2d()
(act3): ReLU(inplace=True)
)
)
(layer2): Sequential(
(0): Bottleneck(
(conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): DetrFrozenBatchNorm2d()
(act1): ReLU(inplace=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn2): DetrFrozenBatchNorm2d()
(drop_block): Identity()
(act2): ReLU(inplace=True)
(aa): Identity()
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): DetrFrozenBatchNorm2d()
(act3): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): DetrFrozenBatchNorm2d()
(act1): ReLU(inplace=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): DetrFrozenBatchNorm2d()
(drop_block): Identity()
(act2): ReLU(inplace=True)
(aa): Identity()
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): DetrFrozenBatchNorm2d()
(act3): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): DetrFrozenBatchNorm2d()
(act1): ReLU(inplace=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): DetrFrozenBatchNorm2d()
(drop_block): Identity()
(act2): ReLU(inplace=True)
(aa): Identity()
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): DetrFrozenBatchNorm2d()
(act3): ReLU(inplace=True)
)
(3): Bottleneck(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): DetrFrozenBatchNorm2d()
(act1): ReLU(inplace=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): DetrFrozenBatchNorm2d()
(drop_block): Identity()
(act2): ReLU(inplace=True)
(aa): Identity()
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): DetrFrozenBatchNorm2d()
(act3): ReLU(inplace=True)
)
)
(layer3): Sequential(
(0): Bottleneck(
(conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): DetrFrozenBatchNorm2d()
(act1): ReLU(inplace=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn2): DetrFrozenBatchNorm2d()
(drop_block): Identity()
(act2): ReLU(inplace=True)
(aa): Identity()
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): DetrFrozenBatchNorm2d()
(act3): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): DetrFrozenBatchNorm2d()
(act1): ReLU(inplace=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): DetrFrozenBatchNorm2d()
(drop_block): Identity()
(act2): ReLU(inplace=True)
(aa): Identity()
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): DetrFrozenBatchNorm2d()
(act3): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): DetrFrozenBatchNorm2d()
(act1): ReLU(inplace=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): DetrFrozenBatchNorm2d()
(drop_block): Identity()
(act2): ReLU(inplace=True)
(aa): Identity()
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): DetrFrozenBatchNorm2d()
(act3): ReLU(inplace=True)
)
(3): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): DetrFrozenBatchNorm2d()
(act1): ReLU(inplace=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): DetrFrozenBatchNorm2d()
(drop_block): Identity()
(act2): ReLU(inplace=True)
(aa): Identity()
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): DetrFrozenBatchNorm2d()
(act3): ReLU(inplace=True)
)
(4): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): DetrFrozenBatchNorm2d()
(act1): ReLU(inplace=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): DetrFrozenBatchNorm2d()
(drop_block): Identity()
(act2): ReLU(inplace=True)
(aa): Identity()
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): DetrFrozenBatchNorm2d()
(act3): ReLU(inplace=True)
)
(5): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): DetrFrozenBatchNorm2d()
(act1): ReLU(inplace=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): DetrFrozenBatchNorm2d()
(drop_block): Identity()
(act2): ReLU(inplace=True)
(aa): Identity()
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): DetrFrozenBatchNorm2d()
(act3): ReLU(inplace=True)
)
)
(layer4): Sequential(
(0): Bottleneck(
(conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): DetrFrozenBatchNorm2d()
(act1): ReLU(inplace=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn2): DetrFrozenBatchNorm2d()
(drop_block): Identity()
(act2): ReLU(inplace=True)
(aa): Identity()
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): DetrFrozenBatchNorm2d()
(act3): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): DetrFrozenBatchNorm2d()
(act1): ReLU(inplace=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): DetrFrozenBatchNorm2d()
(drop_block): Identity()
(act2): ReLU(inplace=True)
(aa): Identity()
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): DetrFrozenBatchNorm2d()
(act3): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): DetrFrozenBatchNorm2d()
(act1): ReLU(inplace=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): DetrFrozenBatchNorm2d()
(drop_block): Identity()
(act2): ReLU(inplace=True)
(aa): Identity()
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): DetrFrozenBatchNorm2d()
(act3): ReLU(inplace=True)
)
)
)
)
(position_embedding): DetrSinePositionEmbedding()
)
(input_projection): Conv2d(2048, 256, kernel_size=(1, 1), stride=(1, 1))
(query_position_embeddings): Embedding(100, 256)
(encoder): DetrEncoder(
(layers): ModuleList(
(0-5): 6 x DetrEncoderLayer(
(self_attn): DetrAttention(
(k_proj): Linear(in_features=256, out_features=256, bias=True)
(v_proj): Linear(in_features=256, out_features=256, bias=True)
(q_proj): Linear(in_features=256, out_features=256, bias=True)
(out_proj): Linear(in_features=256, out_features=256, bias=True)
)
(self_attn_layer_norm): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(activation_fn): ReLU()
(fc1): Linear(in_features=256, out_features=2048, bias=True)
(fc2): Linear(in_features=2048, out_features=256, bias=True)
(final_layer_norm): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
)
)
)
(decoder): DetrDecoder(
(layers): ModuleList(
(0-5): 6 x DetrDecoderLayer(
(self_attn): DetrAttention(
(k_proj): Linear(in_features=256, out_features=256, bias=True)
(v_proj): Linear(in_features=256, out_features=256, bias=True)
(q_proj): Linear(in_features=256, out_features=256, bias=True)
(out_proj): Linear(in_features=256, out_features=256, bias=True)
)
(activation_fn): ReLU()
(self_attn_layer_norm): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(encoder_attn): DetrAttention(
(k_proj): Linear(in_features=256, out_features=256, bias=True)
(v_proj): Linear(in_features=256, out_features=256, bias=True)
(q_proj): Linear(in_features=256, out_features=256, bias=True)
(out_proj): Linear(in_features=256, out_features=256, bias=True)
)
(encoder_attn_layer_norm): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
(fc1): Linear(in_features=256, out_features=2048, bias=True)
(fc2): Linear(in_features=2048, out_features=256, bias=True)
(final_layer_norm): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
)
)
(layernorm): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
)
)
(class_labels_classifier): Linear(in_features=256, out_features=2, bias=True)
(bbox_predictor): DetrMLPPredictionHead(
(layers): ModuleList(
(0-1): 2 x Linear(in_features=256, out_features=256, bias=True)
(2): Linear(in_features=256, out_features=4, bias=True)
)
)
)"""
}